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Abstract

Autonomous driving is an accurate application which is
based on computer vision and multi-sense. Scene parsing is
a comprehensive analysis of an image need by autonomous
driving. As the importance of autonomous driving’ security,
pixel-accurate environmental perception in computer vision
is expected to be exploited. Unlike other applications such
as intelligent surveillance, the inaccuracy of perception sys-
tem which leave out tiny objects would lead to disaster. As
tiny-scale objects are hard to detect and segment, in this
paper, we exploit a more accurate Tiny Instance Segmen-
tation (TIS) adapted to autonomous driving to get precise
boundary for tiny object, which has got 1st place in WAD
competition. Moreover, extensive experiments show the ef-
fectiveness of each components.

1. Introduction
Instance segmentation, which assigns pixel-wise mask

for each object, is one of fundamental computer vision
tasks. This task is important for intelligent surveillance, au-
tonomous driving, robotics and so on.

With the development of deep convolutional neural net-
works, which dominates on computer vision, several solu-
tions were proposed to handle this task. Though detector
like MegDet [1] and Light-Head RCNN [2] have improved
accuracy and speed a lot at the COCO dataset [3], it’s more
significant to predict the contour of an object according to
specific characteristics of autonomous driving. Mask R-
CNN [4] is a typical solution to solve this problem. How-
ever, autonomous driving is an accurate application which
needs precision for detecting an object especially for tiny
objects, while common object detector would fail in this
case.

Several released dataset like COCO[3], CityScapes[5]
have a large room for improvement. However, none of them
aims at autonomous driving. Due to the particularity of au-
tonomous driving, Apollo dataset[6] was released to solve
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Figure 1. Cumulative distribution function with respect to scale.
About 60% scales of objects is under 32 pixels in WAD dataset
(Small Objects is the majority of WAD dataset).

this task. CVPR Workshop on Autonomous Driving uses
part of Apollo dataset, whose small objects are dominant
(about 60% of objects’ scale is less than 32 pixels as Fig-
ure 1).

In this paper, to address the challenge in autonomous
driving, we exploit a better and effective Tiny Instance Seg-
mentation (TIS) to find small scale’s object in an image for
autonomous driving. Our final submission is an ensemble
of 3 models and got 1st place in WAD competition.

2. Methods

2.1. Better Anchor Design

Our method is based on Mask-RCNN [4]. Different from
[4], to hand large scales’ objects, we adding max pooling to
generate an extra RPN feature map at top of region pro-
posal feature as Fig. 2. In this way, network has power
to detect large scale object (Fig. 1). To make the best use
of ground-truth/anchor ratios and make same-size’s propos-
als only have one choice to pool feature (In FPN[7], each
scale of RoIs pools feature from unique stages of ResNet),
we design a Pyramid Anchor (PA), whose size of anchor
is 8 ∗ [[1, 2], [4, 8], [16, 24], [32, 64], [128, 256]] so that each
stage of RPN in FPN has 2-scale anchors, which promise to
generate enough small size’s anchor to cover small objects.
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Figure 2. Visualization of our re-implemented Mask R-CNN baseline.
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Figure 3. The valid region which contains objects is cropped for
training. VRT refers to Valid Training Region at training proceed.

2.2. Valid Training Methods

To handle small objects in the dataset, we found it dif-
ficult to use full image training dataset even we use sub-
linear memory[8] to save GPU-Memory. It’s obvious that
using large-scale image can improve results (eg. Table 1)
as small object’s activation may lost in high-level feature
because of image resizing. Another interesting observation
is that large-area region in an image doesn’t contains any
objects (sky and trees and so on eg. Fig.3), it wastes train-
ing memory and time to make network learning these back-
grounds. Discarding all backgrounds may cause object-
similar patches is recognized to another object by mistake.
It’s necessary to adding some false-samples in training pro-
ceed. Therefore, we randomly sample Valid Training Re-
gion and Full Image to make our network learn more diver-
sity.

3. Experiments
3.1. Dataset and Local Validation

The dataset of this challenge is part of Apollo dataset[6],
which consist of 39222 images for training (19 videos * 2)
and 1917 images for testing (12 short videos). For simplic-

Figure 4. Analysis of coco pre-trained Mask R-CNN on local val-
idation set. Loc: PR at IoU=.10 (localization errors ignored, but
not duplicate detections). Sim: PR after supercategory false pos-
itives (fps) are removed. Oth: PR after all class confusions are
removed. BG: PR after all background (and class confusion) fps
are removed. FN: PR after all remaining errors are removed (triv-
ially AP=1). This figure shows Mask R-CNN’s recall is low.

ity, we choose 3 videos (which is including 4622 images
and from different roads) for local validation apart from
training data. Our experiments are partly based on training-
sub dataset (except local validation from training dataset),
which is used mAP metric in COCO dataset [3] for check-
ing the effectiveness of our methods. In the end, we use
all training data to train our model and submit to kaggle’s
server to get final results.

For a practical deep learning system, the devil is always
in the details. We use the same set of hyper-parameters as in
Mask-RCNN[4], except learning rate schedule. For COCO
pre-trained model, we train our model for 5 epochs with
learning rate 0.01, and another 4 epoches with learning rate
0.001. For ImageNet pre-trained model, we set learning
rate 0.01 at first 12 epoche, and decreases to 1/10, 1/100 at
12, 15 epochs respectively.

We use 8 images (1 image per GPU) in one image batch,
V alid Training Region (V TR) and Full Image (FI)
are randomly chosen, whose shorter edge randomly sam-
pled from {1500, 1800} and longer edge is set to 3384.
Thanks to sublinear memory technology [8], we can train
our network with the limitation of 11G-memory such as
1080ti.
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Table 1. The influence of training scale in Mask R-CNN for WAD dataset. VTR means only using Valid Training Region at training stage.
Results below is mask AP(%).

Network Scale mAP50 mAP75 mAPs mAPm mAPl mAP
Mask R-CNN [COCO] [1500, 1800] 28.1 16.8 7.5 26.9 36.8 16.9
Mask R-CNN [COCO] [1800, 2400] 29.9 18.3 9.2 27.5 40.0 18.3
Mask R-CNN [COCO] VTR 30.3 19.5 9.1 30.5 42.8 18.9

Table 2. The roadmap to final model in Mask R-CNN under backbone of ResNet-50. PA represents Pyramid Anchor, VTR means using
Valid Training Region in training proceed. FI denotes adding Full image at training stage to learn background as well. Results below is
mask AP(%), backbone is based on ResNet-50.

Network COCO PA V TR FI mAP50 mAP75 mAPs mAPm mAPl mAP
Mask R-CNN 25.4 15.1 7.1 23.1 35.9 15.2
Mask R-CNN X 28.1 16.8 7.5 26.9 36.8 16.9
Mask R-CNN X X 29.9 18.3 9.2 27.5 40.0 18.3
Mask R-CNN X X X 30.3 19.5 9.1 30.5 42.8 18.9
Mask R-CNN X X X X 34.3 21.5 10.6 33.1 44.0 21.2

3.2. Experiments Results

We first train our network using our re-implemented
Mask-RCNN baseline, the scale in this setting is set to
{1500, 1800}. As Table 3 shows, compared with ImageNet
pre-trained model, COCO pre-trained model outperforms
by 1.7 points.

The character of apollo dataset is that minor scale of ob-
jects is under 8-pixels while max scale of objects is 75%
of image in images. (bus is ahead from camera). As Fig-
ure 4 shows, recall in COCO pretrained Mask R-CNN is
quite low. In Table 3, we use two setting to improve recall
of Region Proposal Network. CA represents Cluster An-
chor, in which we use K-means to cluster 5 anchor scale
7 ∗ [2, 8, 18, 38, 80] in rpn anchor size. In this way, we
can improve recall on Region Proposal Network to increase
mAP by 0.3. However, by analyzing Average Recall in lo-
cal validation, we found recall is also not enough. As ta-
ble 3 shows, our special PA is more suitable for improving
results.

Table 3. The design in Mask R-CNN for WAD dataset. CA means
Cluster Anchor, PA is equal to Pyramid Anchor. Results below is
mask AP(%).

Network mAP50 mAP75 mAPs mAPm mAPl mAP
Mask R-CNN 25.4 15.1 7.1 23.1 35.9 15.2
+ [COCO] 28.1 16.8 7.5 26.9 36.8 16.9
+ CA 28.6 17.0 7.4 28.0 40.0 17.2
+ PA 29.4 17.8 8.2 27.9 40.2 17.7

For submission, we use all training data (39222 images)
to train our model with different backbone such as ResNet
[10], SENet [11]. It is noticed that we replace the first 7x7
convs with two consecutive 3x3 convs as PSPNet [9] in the
final model, which makes small-scale objects sensitive to
be detected because 7x7 may smooth small objects result-

Figure 5. Visual results on remote scene using single ResNet152-
PSPNet. Small cars (less than 8 pixels) can be detected as well. At
the same time, our detector is able to distinguish pedestrians from
riders.

ing in blur of feature map. Table 2 shows our roadmap to
best result on local validation. For single ResNet-PSPNet-
152, tiny objects and crowd objects(Fig 5 and Fig 6)can be
detected.

The top performance comes with a few details. For
testing, multi-scale testing, horizontal flip testing, bound-
ing box voting in [4] was adopted. For multi-scale testing,
we set longer edge of image to 8000 and other ranges from
1810 to 4510 with step 300. For bounding box voting, nms
thresh is set to 0.5 and merge thresh is set to 0.9. As Ta-
ble 4 shows, our final submission gets 33.9% in the leader-
board and we have got 1st place in this challenge.

4. Conclusion

In CVPR Workshop on Autonomous Driving, we design
a new specifical Tiny Instance Segmentation (TIS) and new
training strategy to detect and segment small objects for au-
tonomous driving so that got 1st place exceeding 2nd place
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Figure 6. Visual Result on Crowdy Scene.

Table 4. Our Results on WAD testing data. MS represents Multi-
Scales Testing

Network Backbone mAP
Mask R-CNN ResNet-50 26.7
Our TIS ResNet-50 29.0
Our TIS SENet-152 31.9
Our TIS + MS ResNet-PSPNet-152 32.4
Our TIS + MS 2*ResNet-PSPNet-152 32.8
Our TIS + MS +SENet 152 33.9
Second in leaderboard unknown 30.2
Third in leaderboard unknown 26.7

by a large marge (Tables 4). In the future, to address real
problem on autonomous driving, we will exploit informa-
tion of time-continuous information and combination with
multi-sense data such as depth map, point clouds and so on.
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