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Problem space

e Gesture, action, activity
e Classification, detection, online recognition
e RGB, depth, skeleton



Gesture, Action, Activity

* Hand gesture
— Short, single person, focused on hands
* American Sign Language
* Action
— Short, single person, involving the body
* Throw, catch, clap
* Activity
— Longer, one or multiple people
* Reading a book, making a phone call, eating
* Talking to each other, hugging, playing basketball



Classification, Detection, Online Recognition

e C(Classification

— Given a pre-segmented clip, predict its action class label

Which A S




Classification, Detection, Online Recognition

* Detection

— Multiple actions may occur simultaneously in different locations and/or at different times

Where
When
What




Classification, Detection, Online Recognition

* Online recognition
— No future frames available
— Recognizing when an action starts/ends

e Action prediction

— prediction with partial observation
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Datasets - RGB
I N I e

UCF101 13320 2~16's 98%

HMDB51 51 6849 1~10s 82.1%

Kinetics 400/600 500K ~10s ~79%

sportsiM 487 1133158 >5min ~73.3%

charades 157 ~8k train;~1.8k validation ; ~39.5%
~2ktest

Moments in Time 339 ~1million ~3s

YouTube-8M 4800 8million 120-500s



Datasets - RGBD

Dataset year Acquisition device Seg/Con Modality #Class #Subjects #Samples #Views Metric
CMU Mocap 2001 Mocap Seg RGB,S 45 144 2235 1 Accuracy
HDMOS5 2007 Mocap Seg RGB,S 130 5 2337 1 Accuracy
MSR-Action3D 2010 Kinect v1 Seg 5D 20 10 567 1 Accuracy
MSRC-12 2012 Kinect v1 Seg S 12 30 594 1 Accuracy
MSR DailyActivity3D 2012 Kinect v1 Seg RGB,D.S 16 10 320 1 Accuracy
UTKinect 2012 Kinect v1 Seg RGB,D.S 10 10 200 1 Accuracy
G3D 2012 Kinect v1 Seg RGB,D.S 5 5 200 1 Accuracy
SBU Kinect Interaction 2012 Kinect v1 Seg RGB,D,S 7 8 300 1 Accuracy
Berkeley MHAD 2013 Mocap Kinect vl Seg RGB,D.S,Au,Ac 12 12 660 4 Accuracy
Multiview Action3D 2014 Kinect v1 Seg RGB,D.S 10 10 1475 3 Accuracy
Chalearn LAP IsoGD 2016 Kinect v1 Seg RGB,D 249 21 47,933 1 Accuracy
NTU RGB+D 2016 Kinect v2 Seg RGB,D,5,IR 60 40 56,880 80 Accuracy
ChalLearn2014 2014 Kinect vl Con RGB,D.S,Au 20 27 13,858 1 Accuracy JI etc.
ChaLearn LAP ConGD 2016 Kinect vl Con RGB,D 249 21 22,535 1 JI
PKU-MMD 2017 Kinect v2 Con RGB,D,S,IR 51 66 1076 3 JI etc.




Outline

* Problem space
* Datasets
— RGB
— RGB-D
e Skeleton-based approaches
* Video based approaches
— CNN features



Action Recognition

e [eature representation
e Classifier
e Spatial-temporal modeling



Feature Representation

e Hand-crafted Feature: HOG, HOF, dense Trajectory
e Skeleton

o Skeleton Joints: ST-NBNN, ST-GCN, ...

o Skeleton Heatmaps
e Two Stream: RGB + Optical flow
e 3D (spatial-temporal space) convolution



ST-NBNN

® Motivation

® Non-parametric model like NBNN has not been well explored in this field
O NBNN has been successful applied in image recognition

® Recognition of a certain action only related to movement of a subset of joints
(spatial)and to a few certain frames (temporal)

R —— Key Stage @ Key Joint  # Key Motion

Figure 1. An Illustration of Key Stage, Joints, and Motion for the
action of waving right hand action.

Spatio-Temporal Naive-Bayes Nearest-Neighbor (ST-NBNN) for Skeleton-Based Action Recognition,Junwu Weng Chaoqun Weng Junsong Yuan, CVPR2017



ST-NBNN

® Representation
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Spatio-Temporal Naive-Bayes Nearest-Neighbor (ST-NBNN) for Skeleton-Based Action Recognition,Junwu Weng Chaoqun Weng Junsong Yuan, CVPR2017



ST-NBNN

e Method
NBNN:
N
¢ =arg mcinz ||xl — NNC(xl)”2 = arg min sum(X,)
i=1 c

sum() : Summation of elements in X,

E OB B BN B BN BN BN B BN B O Ny

:1) Too many parameters !

NBNN+SVM:  12) Easy to over-fitting : ST-NBNN:

- O O O O E O m m

¢ = arg minw” x, ¢ = arg min(ud)TX ut = arg min f.(X,)
C c C
wT Weights learnt by linear SVM u; Spatial Weights
x. Vectorized X, ug Temporal Weights

Spatio-Temporal Naive-Bayes Nearest-Neighbor (ST-NBNN) for Skeleton-Based Action Recognition,Junwu Weng Chaoqun Weng Junsong Yuan, CVPR2017



ST-NBNN

® Experiments

etrod | _wsn_|_ume | ues

NBNN-N 91.7 95.5 88.0
NBNN+SVM 92.4 94.0 100.0
Best Method 94.8[6li33] 98, 2I32] 100.0(€]
Ours 94.8 98.0 100.0

Table.1 Results on MSR-Action3D, UT-Kinect, Berkeley MHAD

Spatio-Temporal Naive-Bayes Nearest-Neighbor (ST-NBNN) for Skeleton-Based Action Recognition,Junwu Weng Chaoqun Weng Junsong Yuan, CVPR2017



Summary for ST-NBNN

e Feature Representation

o Joint position & Velocity
e Classifier

o NBNN
e Spatial-temporal modeling

o Spatial / temporal weights



Deformable Pose Traversal Convolution

e Motivation
O More discriminative feature representation
O Pose information exchange

o Temporal modeling

Deformable Pose Traversal Convolution for 3D Action and Gesture Recognition, Junwu Weng, Mengyuan Liu, Xudong Jiang, Junsong Yuan, ECCV2018



Deformable Pose Traversal Convolution

® Pose Traversal to transfer graph into vector

Undirected acyclic graph Vector
| e o |
J
. 5 e €Tr & R One-channelversion
L =
f 1 X € RJXC C-channel version

« Most of the joints are visited more than once
« the spatial neighborhood relationship among joints is preserved
« Each sequence is representedas | = {$t}tT=1

Deformable Pose Traversal Convolution for 3D Action and Gesture Recognition, Junwu Weng, Mengyuan Liu, Xudong Jiang, Junsong Yuan, ECCV2018



Deformable Pose Traversal Convolution

® Regular sampling

y(io) = > w(in) x(io+i,) G={-M, ., —1,01,., M}
in€G
e Deformable sampling

ylio) = Y. wlin) -@(io+in+0,) G ={(in,dn)}h_,
(in,0,)EG

Deformable Pose Traversal Convolution for 3D Action and Gesture Recognition, Junwu Weng, Mengyuan Liu, Xudong Jiang, Junsong Yuan, ECCV2018



Deformable Pose Traversal Convolution

e Method
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Deformable Pose Traversal Convolution for 3D Action and Gesture Recognition, Junwu Weng, Mengyuan Liu, Xudong Jiang, Junsong Yuan, ECCV2018



Deformable Pose Traversal Convolution

® Experiment

Vethod | OHG | DHG. | DHG1A | 0HG23 | MHAD  NTUGS | KTUCY

PoseChain 76.2 90.4 80.4 75.7 96.4 75.2 83.4
Pose Traversal 77.1 91.8 81.1 76.6 98.6 76.1 84.3
D-Pose Traversal 81.9 95.2 85.8 80.2 100.0 76.8 84.9
Best Method 73.6 88.3 83.1 80.0 100.0 83.2 89.3

Deformable Pose Traversal Convolution for 3D Action and Gesture Recognition, Junwu Weng, Mengyuan Liu, Xudong Jiang, Junsong Yuan, ECCV2018



Summary

e Feature Representation

o Joint position & Velocity + deformable pose traversal convolution
e Classifier

o LSTM
e Spatial-temporal modeling

o Spatial: deformable pose traversal convolution

o Temporal: LSTM



ST-GCN . o%

e Motivation
® Encode the spatial and temporal structure of joints o o

Figure 1: The spatial temporal graph of a skeleton sequence used
in this work where the proposed ST-GCN operate on. Blue dots
denote the body joints. The intra-body edges between body joints
are defined based on the natural connections in human bodies.
The inter-frame edges connect the same joints between consecu-
tive frames. Joint coordinates are used as inputs to the ST-GCN.
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Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition, Sijie Yan and Yuanjun Xiong and Dahua Lin, AAAI 2018



ST-GCN

e Spatial Graph Convolutional Neural Network

fo

w=A"T(A+D)A"E, W,

A" = 3 (AT + 1Y),

Network architecture and training. Since the ST-GCN
share weights on different nodes, it is important to keep the
scale of input data consistent on different joints. In our ex-
periments, we first feed input skeletons to a batch normal-
ization layer to normalize data. The ST-GCN model is com-
posed of 9 layers of spatial temporal graph convolution op-
erators (ST-GCN units). The first three layers have 64 chan-
nels for output. The follow three layers have 128 channels
for output. And the last three layers have 256 channels for
output. These layers have 9 temporal kernel size. The Resnet
mechanism is applied on each ST-GCN unit. And we ran-
domly dropout the features at 0.5 probability after each ST-
GCN unit to avoid overfitting. The strides of the 4-th and
the 7-th temporal convolution layers are set to 2 as pooling
layer. After that, a global pooling was performed on the re-
sulting tensor to get a 256 dimension feature vector for each
sequence. Finally, we feed them to a SoftMax classifier. The

Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition, Sijie Yan and Yuanjun Xiong and Dahua Lin, AAAI 2018



ST-GCN

® Experiments

Top-1 | Top-5

Baseline TCN 20.3% | 40.0%
Local Convolution 22.0% | 43.2%
Uni-labeling 19.3% | 37.4%
Distance partitioning® | 23.9% | 44.9%
Distance Partitioning | 29.1% | 51.3%
Spatial Configuration | 29.9% | 52.2%
ST-GCN + Imp. 30.7% | 52.8%

Table 1: Ablation study on the Kinetics dataset. The “ST-
GCN+Imp.” is used in comparison with other state-of-the-
art methods. For meaning of each setting please refer to

Sec.4.2.

Top-1 Top-5

RGB(Kay et al. 2017) 57.0% | 77.3%

Optical Flow (Kay et al. 2017) 49.5% | 71.9%
Feature Enc. (Fernando et al. 2015) 14.9% | 25.8%
Deep LSTM (Shahroudy et al. 2016) | 16.4% | 35.3%
Temporal Conv. (Kim and Reiter 2017) | 20.3% | 40.0%
ST-GCN 30.7% | 52.8%

Table 2: Action recognition performance for skeleton based
models on the Kinetics dataset. On top of the table we list

the performance of frame based methods.

X-Sub | X-View

Lie Group (Veeriah, Zhuang, and Qi 2015) | 50.1% | 52.8%
H-RNN (Du, Wang, and Wang 2015) 59.1% | 64.0%
Deep LSTM (Shahroudy et al. 2016) 60.7% | 67.3%
PA-LSTM (Shahroudy et al. 2016) 62.9% | T70.3%
ST-LSTM+TS (Liu et al. 2016) 69.2% T7.7%
Temporal Conv (Kim and Reiter 2017). T4.3% | 83.1%
C-CNN + MTLN (Ke et al. 2017) 79.6% 84.8%
ST-GCN 81.5% | 88.3%

Table 3: Skeleton based action recognition performance on
NTU-RGB+D datasets. We report the accuracies on both
the cross-subject (X-Sub) and cross-view (X-View) bench-

marks.

Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition, Sijie Yan and Yuanjun Xiong and Dahua Lin, AAAI 2018



ST-GCN

® Extensions
o 25-AGCN
e Predefined Graph structure
e Graph structure fixed for all layers and shared for all the classes
e AGC-LSTM
e capture discriminative features in spatial configuration and
temporal dynamics, but also explore the co-occurrence
relationship between spatial and temporal domains

Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition, Sijie Yan and Yuanjun Xiong and Dahua Lin, AAAI 2018
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition, Lei Shi, Yifan Zhang, Jian Cheng, Hanging Lu, CVPR2019
An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition, Chenyang Si, Wentao Chen, Wei Wang,Liang Wang, Tieniu Tan, CVPR2019



Summary for ST-GCN

e Feature Representation

o 2D/3D Joint position
e Classifier

o GCN
e Spatial-temporal modeling

o Spatial-temporal Adjacency matrix



Pose Estimation Maps

e Motivation
o Estimate 2d poses from RGB frames are usually noisy due to partial occlusions and self-
similarities.
o Pose estimation map provides global body shape, which can be used to correct noisy
pose joints.

Ground Truth

Recognizing Human Actions as the Evolution of Pose Estimation Maps, Mengyuan Liu, Junsong Yuan, CVPR2018



Extracting joint estimation maps n ' Description of evolution of poses Two Stream Fusion
with Convolutional Pose Machines & evolution of pose estimation maps (Pre-trained VGG19)

Rank pooling

Spatial concatenation
—— Temporal concatenation
— Coordinate concatenation

Linear interpolation
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1. We design compact signatures for evolution of poses and evolution of pose estimation maps
2. We test the performance of action recognition using sole estimated 2d poses

3. We fuse both cues and achieve compatable performances with 3d poses (from Kinect)
Recognizing Human Actions as the Evolution of Pose Estimation Maps, Mengyuan Liu, Junsong Yuan, CVPR2018



Evaluation on NTU RGB+D dataset

Largest dataset for 3D pose-based recognition task

Data Meth~A Type Year Cross Cross View
State-of-the-art method Subject
Super Norm State-of-the-art method -crafted 2014 31.82% 13.61%
eS_tlmaffed 3d pose Beep F based on CNN NN 2016 —
using Kinect sensor o
= ) Pose estimation
(from depth) GCA-LSTM [26] v ~rov. RP 29517 [ R - 80%
Clips + CNN + MTLN [20] Compatabl . They benefit each g3
her!
estimated 2d pose (from rgb) S-P e R other 21%
pose estimation map (from rgb) S-PEM 0 018 72.75% 78.35%
2d pose + pose estimation map Two Stream CN . 2018 78.80% 84.21%
56880 Videos; 60 actions; performed by 40 subjects; recorded from various

views
Cross Subject: 40320 videos for training; 16560 videos for testing
Cross View: 37920 videos for training; 18960 videos for testing



Summary

e Feature Representation

o Joint Position + Heatmaps
e C(lassifier

o Two-steam CNN
e Spatial-temporal modeling

o Temporal evolution



Outline

* Problem space
* Datasets
— RGB
— RGB-D
» Skeleton-based approaches

* Video based approaches



TSN

e Motivation
o discover the principles to design effective ConvNet architectures for action recognition

Video Snippets Temporal Segment Networks
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Fig. 1. Temporal segment network: One input video is divided into K segments and
a short snippet is randomly selected from each segment. The class scores of different
snippets are fused by an the segmental consensus function to yield segmental consensus,
which is a video-level prediction. Predictions from all modalities are then fused to
produce the final prediction. ConvNets on all snippets share parameters.

Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, Luc Van Gool, ECCV2016



TSN

e Multiple-modalities
o RGBimages
o Stacked optical flow
o Warped optical flow

Fig. 2. Examples of four types of input modality: RGB images, RGB difference, optical
flow fields (x,y directions), and warped optical flow fields (x,y directions)

Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, Luc Van Gool, ECCV2016



Table 5. Component analysis of the proposed method on the UCF101 dataset (split
1). From left to right we add the components one by one. BN-Inception [23] is used as

TS N the ConvNet architecture.

Component|Basic Cross-Modality |Partial BN | Temporal
e Experiments Two-Stream [1]|Pre-training  |with dropout|Segment Networks
Accuracy 90.0% 91.5 92.0% 93.5%

Table 6. Comparison of our method based on temporal segment network(TSN) with
other state-of-the-art methods. We separately present the results of using two input
modalities (RGB+Flow) and three input modalities (RGB+Flow+Warped Flow).

| HMDB51 | UCF101 |
DT+MVSV [37] 55.9% | DT+ MVSV [37] 83.5%
iDT+FV [2] 57.2%|iDT+FV [38] 85.9%
iDT+HSV [25] 61.1%[iDT+HSV [25] 87.9%
MoFAP [39] 61.7%|MoFAP [39] 88.3%
Two Stream [1] 59.4%|Two Stream [1] 88.0%
VideoDarwin [18§] 63.7%|C3D (3 nets) [13] 85.2%
MPR [40] 65.5%| Two stream +LSTM [4] 88.6%
FsrCN (SCT fusion) [28] 59.1%|FgTCN (SCI fusion) [28] 88.1%
TDD+FV [5] 63.2%| TDD+FV [5] 90.3%
LTC [19] 64.8%|LTC [19] 91.7%
KVMF [41] 63.3%|KVMF [41] 93.1%
TSN (2 modalities) 68.5%| TSN (2 modalities) 94.0%
TSN (3 modalities) 69.4%| TSN (3 modalities) 94.2%

Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, Luc Van Gool, ECCV2016



Summary for TSN

e Feature Representation

o RGB, optical flow, ...
e Classifier

o CNN
e Spatial-temporal modeling

o Weak



C3D

e Motivation
o Is 3D convolution more suitable for action recognition?
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(@) 2D convolution (b) 20 convolution on multiple frames (c) 3D convolution

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. ¢) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

Learning Spatiotemporal Features with 3D Convolutional Networks, Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, Manohar Paluri, ICCV2015



C3D

e Method

Convla ||g|[ Conv2a [[o{| Conv3a || Conv3b ||| Conv4a ([ Convab [fs|| Conv5a || Conv5b |[| fc6 || fc7
64 ||§| 128 [&]| 256 256 ||f

[softmax]

512 512 = 512 512 21|4096| [4096

Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer.
All 3D convolution kernels are 3 x 3 x 3 with stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box.
The 3D pooling layers are denoted from pooll to pocl5. All pooling kernels are 2 x 2 x 2, except for poollis 1 x 2 x 2. Each fully
connected layer has 4096 output units.

Learning Spatiotemporal Features with 3D Convolutional Networks, Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, Manohar Paluri, ICCV2015



C3D

® Experiments

Dataset SportIM UCF101 ASLAN YUPENN UMD Object
Task action recognition | action recognition | action similarity labeling | scene classification | scene classification | object recognition
Method [29] [BO125D [51] [V] [V] [47]
Result 90.8 75.8 (89.1) 68.7 96.2 77.7 12.0

C3D 85.2 85.2(904) 78.3 98.1 87.7 22.3

Table 1. C3D compared to best published results. C3D outperforms all previous best reported methods on a range of benchmarks except
for Sports-1M and UCF101. On UCF101, we report accuracy for two groups of methods. The first set of methods use only RGB frame
inputs while the second set of methods (in parentheses) use all possible features (e.g. optical flow, improved Dense Trajectory).

Learning Spatiotemporal Features with 3D Convolutional Networks, Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, Manohar Paluri, ICCV2015



P3D

e Motivation
O Expensive computational cost and memory demand for C3D

Video hit@1
A

66.4% [------
Method Depth | Model

64.6% |[--==--Tmm e mmm e S1ze
C3D 11 321MB
ResNet 152 235MB

61.1% [------§8--------- oo oooe o I P3D ResNet 199 26IMB

P3D ResNet ResNet C3D

Figure 1. Comparisons of different models on Sports-1M dataset
in terms of accuracy, model size and the number of layers.

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks, Zhaofan Qiu,, Ting Yao,, and Tao Mei, ICCV2017



P3D

e Method
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Figure 4. P3D ResNet by interleaving P3D-A, P3D-B and P3D-C.
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Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks, Zhaofan Qiu,, Ting Yao,, and Tao Mei, ICCV2017
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P3D

® Experiments

Table 3. Performance comparisons with the state-of-the-art meth-
ods on UCFI101 (3 splits). TSN: Temporal Segment Network-
s [26]; TDD: Trajectory-pooled Deep-convolutional Descriptor
[35]; IDT: Improved Dense Trajectory [34]. We group the ap-
proaches into three categories, i.e., end-to-end CNN architectures
which are fine-tuned on UCF101 at the top, CNN-based video rep-
resentation extractors with linear SVM classifier in the middle and
approaches fused with IDT at the bottom. For the methods in the
first direction, we report the performance of only taking frames
and frames plus optical flow (in brackets) as inputs, respectively.

Method |  Accuracy
End-to-end CNN architecture with fine-tuning
Two-stream ConvNet [25] 73.0% (88.0%)
Factorized ST-ConvNet [29Y] T71.3% (88.1%)
Table 2. Comparisons in terms of pre-train data, clip length, Top-1 clip-level accuracy and Top-1&S5 video-level accuracy on Sports-1M. 0 ctream + LSTM [37] 82.6% (88.6%)
Method Pre-train Data | Clip Length | Clip hit@1 | Video hit@1 | Video hit@5 Two-stream fusion [6] 82.6% (92.5%)
Deep V¥deo (Single Frflme) [10] ImageNet1 K 1 41.1% 59.3% 77.7% Long-term temporal ConvNet [33] | 82.4% (91.7%)
Deep Vld.eo (Slow I'zusno‘n) [10] ImageNet1K 10 41.9% 60.9% 80.2% Key-volume mining CNN [39] 84.5% (93.1%)
Convolutlonal Pooling [*7] ImageNet1K 120 70.8% 72.3% 90.8% ST-ResNet [] $2.2% (93.4%)
C3D [21] - 16 44.9% 60.0% 84.4% ) )
C3D[31] 1380K 16 46.1% 61.1% 85.2% TSN 0] 85.7% (94.0%)
ResNet-152 [7] ImageNet1K 1 46.5% 64.6% 26.4% CNN-based representation extractor + linear SVM
P3D ResNet (ours) TmageNet 1K 16 47.9% 66.4% 87.4% C3D[31] 82.3%
ResNet-152 83.5%
P3D ResNet 88.6%
Method fusion with IDT
IDT [34] 85.9%
C3iD+IDT [31] 90.4%
TDD + IDT [35] 91.5%
ResNet-152 + IDT 92.0%
P3D ResNet + IDT 93.7%

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks, Zhaofan Qiu,, Ting Yao,, and Tao Mei, ICCV2017
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e Motivation
o Efficient spatial-temporal representation

a) LSTM b) 3D-ConvNet c) Two-Stream d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
Action
Action Action Action ,%. Action
| /I_,\ 3D ConvNet ‘ /__I_‘
.—\—. 0oo —.-{ ( ) L+ ) h = )
LSTM LSTM . —L P ] _
( ' ( _ L ) ConvNetJ ConvNet [ — I || 3D ConvNet \ 3D ConvNet
_ConvNel 000 ConvNe_lj | . \ ). ConvNet ‘ ConvNet \ H A
B a— — ' ' R E— \ J it =
Images ) _ I i R — [ _
Image 1 | oo | Image K 110 K Image 1 Optical ootical | Images Optical
Y Flow 1 to N Image 1|| _ Optical 11} 1toK ||| Flow 110K
— time / Flow 1 to N|| iy -
time time time time

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, Joao Carreira, Andrew Zisserman, CVPR2017
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e Method

Inflated Inception-V1 Inception Module (Inc.)

Rec. Field: Rec. Field:
7,11,11 11,27,27

Video .
stride 2
Rec. Field:
23,7575
o] S ~ P —
Inc,J-—[lnc, 1-— Inc. +— Inc. v—tlnc,
Rec. Field: Rec. Field:
59,219,219 99,539,539
7

@—@“— Predictions

Figure 3. The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right). The strides of convolution and pooling
operators are 1 where not specified, and batch normalization layers, ReL.u’s and the softmax at the end are not shown. The theoretical
sizes of receptive field sizes for a few layers in the network are provided in the format “time,x,y"” — the units are frames and pixels. The
predictions are obtained convolutionally in time and averaged.

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, Joao Carreira, Andrew Zisserman, CVPR2017
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® Experiments

UCF-101 HMDB-51 Kinetics
Architecture RGB | Flow | RGB + Flow || RGB | Flow | RGB + Flow || RGB | Flow | RGB + Flow
(a) LSTM 81.0 - - 36.0 - - 63.3 - -
(b) 3D-ConvNet 51.6 - - 24.3 - - 56.1 - -
(¢) Two-Stream 83.6 | 85.6 91.2 432 | 56.3 58.3 622 | 524 65.6
(d) 3D-Fused 83.2 | 85.8 89.3 492 | 55.5 56.8 - - 67.2
[(e)TwoStream 13D | 845 | 90.6 | 934 || 4998 | 619 | 664 | 711 | 634 | 742 |

Table 2. Architecture comparison: (left) training and testing on split 1 of UCF-101; (middle) training and testing on split 1 of HMDB-51;
(right) training and testing on Kinetics. All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet, a C3D-like [31]
model which has a custom architecture and was trained here from scratch. Note that the Two-Stream architecture numbers on individual
RGB and Flow streams can be interpreted as a simple baseline which applies a ConvNet independently on 25 uniformly sampled frames
then averages the predictions.

Kinetics ImageNet then Kinetics
Architecture RGB | Flow | RGB +Flow RGB | Flow [RGB +Flow
(a) LSTM 53.9 — - 63.3 - -
(b) 3D-ConvNet 56.1 - - - - -
(c) Two-Stream 57.9 49.6 62.8 62.2 52.4 65.6
(d) 3D-Fused - - 62.7 - - 67.2

[ (e) Two-Stream I3D | 68.4 (88.0) [ 61.5(83.4) | 71.6 (90.0) [[ 71.1(89.3) | 63.4(84.9) | 74.2(91.3) |

Table 3. Performance training and testing on Kinetics with and without ImageNet pretraining. Numbers in brackets () are the Top-5
accuracy, all others are Top-1.

Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset, Joao Carreira, Andrew Zisserman, CVPR2017



Summary

e Feature Representation

o RGB video frames
e C(Classifier

o 3D convolution
e Spatial-temporal modeling

o 3D convolution



SlowFast

e Motivation

o Combine spatial semantics and motion at fine temporal resolution
Slow pathway
' g Ly > ]
C T ¢ T
¢ T -]
HW T g_
c g
aT lf aT
aT BC pC
BC Fast pathway

Figure 1. A SlowFast network has a low frame rate, low temporal
resolution Slow pathway and a high frame rate, o x higher temporal
resolution Fast pathway. The Fast pathway is lightweight by using
a fraction (3, e.g., 1/8) of channels. Lateral connections fuse them.
This sample is from the AVA dataset [17] (annotation: hand wave).

SlowFast Networks for Video Recognition, Christoph Feichtenhofer Haoqi Fan Jitendra Malik Kaiming He, ICCV 2019



SlowFast

e Method

(i) Time-to-channel: We reshape and transpose {a7’, S 2,
BCY} into {T, S%, a3C'}, meaning that we pack all o frames
into the channels of one frame.

(11) Time-strided sampling: We simply sample one out of
every « frames, so {aT', S?, 3C'} becomes {T', S?, 3C}.

(ii1) Time-strided convolution: We perform a 3D convolution
of a 5x 1% kernel with 23C output channels and stride = o.

The output of the lateral connections is fused into the Slow
pathway by summation or concatenation.

stage Slow pathway Fast pathway output sizes T'x S2
raw clip - - 642242
L 5 . 2 Slow : 4x2247
data layer stride 16, 1 stride 2, 1 Fast + 32%224°
conv 1x7%, 64 5x7°, 8 Slow : 4x 1127
! stride 1, 22 stride 1, 22 Fast : 32x 1122
ool 13" max 13 max Slow : 4x56°
poch stride 1, 22 stride 1, 22 Fast : 32x562
1x1%,64 ] [ 3x1%,8 ] _ 5
ress 1x3%,64 |3 || Tx3%L8 |x3 f"_;‘_'if(izz
| 1x12,256 | | 1x12,32 | ot
[ 1x12, 128 ] [ 3x12, 16 ] 5
s 5 . g2
res 1x3%,128 | x4 || Tx3% 16 | x4 _f”_;‘.'if(;iz
| 1x12,512 | | 1x12,64 | stz 2axs
[ 3x1%,256 | [ 3x12, 32 ] 5
res x3%,256 [x6|| 1x3%32 |x6 f"_;‘_ A l:F
| 1x12,1024 | | 1x12, 108 | ast z Sex
[ 3x12,512 [ 3x12, 64 ] o
ress 1x3%,512 | x3|| Tx3%,64 |x3 ﬁ"”_;‘_'ff)‘(;
| 1x12,2048 | | 1x12,256 | s
global average pool, concate, fe # classes

Table 1. An example instantiation of the SlowFast network. The
dimensions of kernels are denoted by {T'xS?, C'} for temporal,
spatial, and channel sizes. Strides are denoted as {temporal stride,
spatial strideg}. Here the speed ratio is @« = 8 and the channel
ratio is 3 = 1/8. 7 is 16. The green colors mark higher temporal
resolution, and orange colors mark fewer channels, for the Fast
pathway. Non-degenerate temporal filters are underlined. Residual
blocks are shown by brackets. The backbone is ResNet-50.

SlowFast Networks for Video Recognition, Christoph Feichtenhofer Haoqi Fan Jitendra Malik Kaiming He, ICCV 2019



model flow| pretrain |top-1|top-5| GFLOPs x views
SIOWFaSt [3D [3] ImageNet| 72.1 | 90.3 108 x N/A
Two-Stream 13D [3] v" |[ImageNet| 75.7 | 92.0 216 x N/A
S3D-G [57] v" |[ImageNet| 77.2 | 93.0 143 x N/A
. Nonlocal R50 [52] ImageNet| 76.5 | 92.6 282 x 30
] Experlments Nonlocal R101 [52] Ima; 77.7193.3 359 x 30
R(2+1)D Flow [47] v - 67.5|87.2 152 x 115
model pretrain top-1 | top-5 | GFLOPs x views STC [7] _ 68.7 | 88.5 N/A x N/A
ij\’ llZIJP S RGBS |imenen indon 71? 2°i ‘Os\x \N’A ARTNet [50] - 69.2 [ 88.3 | 23.5 x 250
. et-lhvi R | mgNet+Kind00 | /9.0 | N/ N/ -
SlowFast 4% 16, R30 - 788940 | 36.1 x 30 S3D [57] i 694 189.11 664 x N/A
SlowFast 88, R50 - 799|945 | 657 %30 ECO [59] - 70.0 | 89.4 | N/A x N/A
SlowFast 8x8, R101 - 80.4 | 94.8 106 x 30 13D [3] v - 71.6 | 90.0 216 x N/A
SlowFast 16x 8, R101 - 81.1 1951 | 213 x 30 R(2+1)D [47] - 72.0 [ 90.0 152 x 115
SlowFast 16 <8, R101+NL - 81.8 | 95.1 234 x 30 R(2+1)D [47] v _ 73.9 [ 90.9 304 % 115
Table 3. Comparison with the state-of-the-art on Kinetics-600. SlowFast 4x 16, R50 - 75.6 | 92.1 36.1 x 30
SlowFast models the same as in Table 2. SlowFast 8 x8, R50 - 77.0 | 92.6 65.7 x 30
model pretrain mAP | GFLOPs x views SlowFast 8 x8, R101 - 77.9(93.2 106 x 30
CoViAR, R-50 [55] ImageNet 21.9 N/A SlowFast 168, R101 - 78.9 | 93.5 213 x 30
Asyn-TF, VGG16 [39] ImageNet 224 N/A SlowFast 168, R101+NL - 79.8 | 93.9 234 x 30
MultiScale TRN [58] ImageNet 252 N/A
Nonlocal, R101 [52] ImageNet+Kinetics400| 37.5 | 544 x 30 Table 2. Comparison with the state-of-the-art on Kinetics-400.

STRG, RIOI+NL [53] | ImageNet+Kinetics400| 39.7 | 630 x 30 In the last column, we report the inference cost with a single “view"

our baseline (Slow-only) Kinetics-400 39.0 187 x 30 . . . ) ] . o

SlowFast Kinetics.400 21 | 213 %30 (temporal clip with spatial c.rop) X the ngmbers of bl.lCh views used.

SlowFast, +NL Kinetics-400 425 | 234 %30 The SlowFast models are with different input sampling (1"x 1) and

SlowFast, +NL Kinetics-600 452 | 23430 backbones (R-50, R-101, NL). “N/A” indicates the numbers are
Table 4. Comparison with the state-of-the-art on Charades. All not available for us.

our variants are based on T'x T = 16x8, R-101.

SlowFast Networks for Video Recognition, Christoph Feichtenhofer Haoqi Fan Jitendra Malik Kaiming He, ICCV 2019



SlowFast

® Experiments

” T Y Slow-only (19.0 mAP)[
o o ® SlowFast (24.2 mAP) |

Figure 4. Per-category AP on AVA: a Slow-only baseline (19.0 mAP) vs. its SlowFast counterpart (24.2 mAP). The highlighted categories
are the 5 highest absolute increase (black) or 5 highest relative increase with Slow-only AP > 1.0 (orange). Categories are sorted by number
of examples. Note that the SlowFast instantiation in this ablation is not our best-performing model.

SlowFast Networks for Video Recognition, Christoph Feichtenhofer Haoqi Fan Jitendra Malik Kaiming He, ICCV 2019



Summary for SlowFast

e Feature Representation

o RGB Frames with two path (slow & fast)
e Classifier

o 3D convolution
e Spatial-temporal modeling

o 3D convolution



Human Centric Spatio-Temporal Action Localization

e Motivation
o Combine spatial & temporal information

: Localization
RGB Frames Human Detection —» 0o 2au0
Results
Preprocessing Optical Flow @
Classification
Acoustic Feautres 2D/3D Model

Fig. 1. The designed framework in our method. We split the spatio-temporal
action localization into two subtasks, including human detection and action
classification. Given the detections, we mainly focus on extracting multi
vision cues, such as appearance information, motion information, and acoustic
features. By applying ROI pooling, we can integrate the results from different
models.

Human Centric Spatio-Temporal Action Localization, Jiang etc, http://www.skicyyu.org/AVA/AVA_report.pdf



Human Centric Spatio-Temporal Action Localization

e Motivation
o Combine spatial & temporal information

: Localization
RGB Frames Human Detection —» 0o 2au0
Results
Preprocessing Optical Flow @
Classification
Acoustic Feautres 2D/3D Model

Fig. 1. The designed framework in our method. We split the spatio-temporal
action localization into two subtasks, including human detection and action
classification. Given the detections, we mainly focus on extracting multi
vision cues, such as appearance information, motion information, and acoustic
features. By applying ROI pooling, we can integrate the results from different
models.

Human Centric Spatio-Temporal Action Localization, Jiang etc, http://www.skicyyu.org/AVA/AVA_report.pdf



Human Centric Spatio-Temporal Action Localization

e Method

Short-term Clips FPN Detector Concat/add dHuma_m
tect
RPN . etection
ROI pooling +ATR N
Long-range inputs layer Classi Feation
I3D resnet50 + NL Topk/average Score
Motion Clues Feature maps [
C3D P3D P Late/early o
Fusion Localization
Acoustic Feature CIDATSN Resulst
Action
Inputs Base Models ROI Pooling Ensemble Localization

Fig. 2. The overview of our method. First, we explore different vision cues, which are respectively fed into RPN and feature extractors. Then we apply ROI
pooling operation based on the proposal regions and the corresponding feature maps. After that, we explore different integration strategies on the applied
models. Finally, we calculate the location results by considering the classification results and proposal regions.

Human Centric Spatio-Temporal Action Localization, Jiang etc, http://www.skicyyu.org/AVA/AVA_report.pdf



Human Centric Spatio-Temporal Action Localization

e Experiments

TABLE 1
RESULTS ON VALIDATION SET.

Model Input Modality Operation mAP (%)
Faster-RCNN [4] (3. 40(RGB)+40(Flow), 360, 400) RGB + Flow - 16.2
(3, 20, 224, 224) RGB - 19.33
(3, 20, 224, 224) RGB ATR 20.01
i3d resnet50 + NL (3, 40, 224, 224) RGB 40 clips 19.37
(3, 20, 360, 400) RGB (360,400) size 19.86
(3. 20(RGB)+20(Flow), 224, 224) RGB + Flow add 21.66
P3D199 (3, 20(RGB)+20(Flow), 224, 224) RGB + Flow - 17.87
resnetl52 (3, 20, 224, 224) RGB TSN 14.68
artnet18 (3, 20, 224, 224) RGB - 16.67
Veglo - Audio - 6.5
Ensemble(Vison Only) 25.63
Ensemble (Full) 25.75

Human Centric Spatio-Temporal Action Localization, Jiang etc, http://www.skicyyu.org/AVA/AVA_report.pdf



Conclusion

® Feature Representation is important for Action Recognition

O  Skeleton
B Pros: Simple and efficient to compute, good results
B Cons: skeleton itself may not be accurate

O Two-Steam
B Pros: easy to deploy
B Cons: spatial and temporal are decoupled

O 3D Convolution
B Pros: promising results to model both spatial and temporal info

B Cons: data hungray



