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Visual Recognition

A fundamental task in computer vision

* Classification

* Object Detection

* Semantic Segmentation
* |nstance Segmentation
* Key point Detection

* VQA
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Category-level Recognition

(2
-

|
' A )
amn & s g
l(lhx” \:s (\L\J@] .

' A 1t L ANA

| (U;Di.ﬂkd’ ‘I /
W' }1“.“” \ :»
Rk [8 '

Category-level Recognition Instance-level Recognition

gD



Representation

* Bounding-box

* Face Detection, Human Detection, Vehicle Detection, Text Detection,
general Object Detection

* Point
 Semantic segmentation (Instance Segmentation)
* Keypoint

* Face landmark
* Human Keypoint
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Outline

e Detection
e Conclusion
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Detection - Evaluation Criteria

Average Precision (AP) and mAP

Precision and recall are single-value metrics based on the whole list of documents returned by the system. For systems that return a ranked sequence of documents, it is desirable to also consider the order in which the returned documents are
presented. By computing a precision and recall at every position in the ranked sequence of documents, one can plot a precision-recall curve, plotting precision p(r} as a function of recall r. Average precision computes the average value ofp(r] ol
the interval from ¢ = 0 to r = 1:[°

1
AveP = f p(r)dr
0

true positives false positives

selected elements

How many selected How many relevant
items are relevant? items are selected?
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Figures are from wikipedia



Detection - Evaluation Criteria

mmAP

Average Precision (AP):

AP % AP at IoU=.58:.85:.95 (primary challenge metric)
aploU=.5@ % AP at IoU=.58 (PASCAL VOC metric)
AploU=.75 % AP at IoU=.75 (strict metric)
AP Across Scales:
appemEl % AP for small objects: area < 322
ppmedium % AP for medium objects: 322 < area < 967
Aplarge % AP for large objects: area > 962
Average Recall (AR):
ARMax=1 % AR given 1 detection per image
ARMax=10 % AR given 10 detections per image
pprE=y % AR given 10@ detections per image
AR Across Scales:
ARsmall % AR for small objects: area < 322
ARmedium % AR for medium objects: 322 < area < 962
ARlerge % AR for large objects: area > 962

1. Unless otherwise specified, AP and AR are averaged over multiple Intersection over Union (loU) values. Specifically we use 10 loU
thresholds of .50:.05:.95. This is a break from tradition, where AP is computed at a single loU of .50 (which corresponds to our metric
AP!9U=50) Averaging over loUs rewards detectors with better localization.

2. AP is averaged over all categories. Traditionally, this is called "mean average precision" (mAP). We make no distinction between AP and
MAP (and likewise AR and mAR) and assume the difference is clear from context.

3. AP (averaged across all 10 loU thresholds and all 80 categories) will determine the challenge winner. This should be considered the single
most important metric when considering performance on COCO.

4.1n COCO, there are more small objects than large objects. Specifically: approximately 41% of objects are small (area < 322), 34% are
medium (327 < area < 967), and 24% are large (area > 96°). Area is measured as the number of pixels in the segmentation mask.

5. AR is the maximum recall given a fixed number of detections per image, averaged over categories and loUs. AR is related to the metric of
the same name used in proposal evaluation but is computed on a per-category basis.

6. All metrics are computed allowing for at most 100 top-scoring detections per image (across all categories).

7. The evaluation metrics for detection with bounding boxes and segmentation masks are identical in all respects except for the loU

computation (which is performed over boxes or masks, respectively).
Face™* i N
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How to perform a detection?

e Sliding window: enumerate all the windows (up to millions of

windows)

 VJ detector: cascade chain
Fur!her

* Fully Convolutional network
Re,iecr Sub-window

* shared computation

Face++ B' *nl Robust Real-time Object Detection; Viola, Jones; IJCV 2001
http://www.vision.caltech.edu/html-files/EE148-2005-Spring/pprs/violaO4ijcv.pdf



General Detection Before Deep Learning

e Feature + classifier

* Feature
* Haar Feature
 HOG (Histogram of Gradient)
 LBP (Local Binary Pattern)
* ACF (Aggregated Channel Feature)

e C(Classifier
e SVM
* Bootsing
e Random Forest

Face™ LY




Traditional Hand-crafted Feature: HoG

Face™ LY

Input image
<a— Detoction window

, In practice, effect is very
NOTIRSS DUSINA & Dol "~ small (about 1%) while
some computational
time is required*®

Compute gradients

Cell —»
Accumulate weighted votes
for gradient orientation over

spatial cells

Normalise contrast within
overlapping blocks of cells

Collect HOGs for all blocks
over detection window

*Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, SanDiego, USA, June 2005. Vol. II, pp. 886-893.



Traditional Hand-crafted Feature: HoG

(d)

+4 I I In each triplet: (1) the input image, (2) the corresponding R-HOG feature vector (only the dominant orientation of each cell is shown), (3)
Fa Ce L the dominant orientations selected by the SVM (obtained by multiplying the feature vector by the corresponding weights from the linear SVM).




General Detection Before Deep Learning

Traditional Methods

* Pros

e Efficient to compute (e.g., HAAR, ACF) on CPU

* Easy to debug, analyze the bad cases

* reasonable performance on limited training data
* Cons

* Limited performance on large dataset
 Hard to be accelerated by GPU

Face™ LY



Deep Learning for Object Detection

Based on the whether following the “proposal and refine”

* One Stage
 Example: Densebox, YOLO (YOLO v2), SSD, Retina Net
 Keyword: Anchor, Divide and conquer, loss sampling
* Two Stage

« Example: RCNN (Fast RCNN, Faster RCNN), RFCN, FPN, MaskRCNN
 Keyword: speed, performance

Face™ LY



A bit of History

OverFeat(2013)
MultiBox(2014)
Densebox (2015) — UnitBox (2016) —> EAST (20
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One Stage Detector: Densebox
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Figure 1: The DenseBox Detection Pipeline. 1) Image pyramid is fed to the network. 2) After
several layers of convolution and pooling, upsampling feature map back and apply convolution lay-
ers to get final output. 3) Convert output feature map to bounding boxes , and apply non-maximum
suppression to all bounding boxes over the threshold.

DenseBox Unifying Landmark Localization with End to End Object Detection, Huang etc, 2015

++
B ttps //arX|v org/abs/1509.04874




One Stage Detector: Densebox

* No Anchor: GT Assignment

 Asub-circle in the GT is labeled as positive
* fail when two GT highly overlaps
* the size of the sub-circle matters
 more attention (loss) will be placed to large faces

* Loss sampling
* All pos/negative positions will be used to compute the cls loss

Face™ LY



One Stage Detector: Densebox

Problems

|2 loss is not robust to scale variation (UnitBox)
e J|earnt features are not robust

e GT assignment issue (SSD)
* Fail to handle the crowd case

* relatively large localization error (Two stages detector)

 more false positive (FP) (Two stages detector)
e does not obviously kill the fp

Face™ LY



One Stage Detector: Densebox -> UnitBox

|| Ground tuth: ¥ = (&, Xp, Xp, Xy)

X -
f I:] Prediction:. x = (xt,xb, Xy, x,-)

e g, loss = ||O0-0O|J2

i ; o Intersection( [1,1)
e N B o L )

Figure 1: Illustration of IoU loss and /5 loss for pixel-wise
bounding box prediction.
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Figure 5: Compared to ¢s loss, the IoU loss is much more
robust to scale variations for bounding box prediction.

Face“ Bj.- *m UnitBox: An Advanced Object Detection Network, Yu etc, 2016

http://cn.arxiv.org/pdf/1608.01471.pdf



One Stage Detector:
Densebox -> UnitBox->EAST

F-score Ours+PVANet2x ;’ggl ;b;)l; Word box " Word
. ey y . . . . Proposal Proposal ounding : Thresholding Hoizontal
0732€1321p5) 0 or-{ e s
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' Ours+PVANet Text-block = Text-line Character
Y: L. [41 Text-line
Yaoeral [41] (0.757@16.8fps) - (b)l> Text-block | scoremap _| .- 1iate |SCOrC map score map [Rule-based multi-orient Word Multi-orient
(0648@ 1.6 lfpS) FCN generation FCN filtering text-line boxes partition word boxes
o S Ch
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[ ] Tl_an _gt al. [34] o Input | (¢) |Mull| channe | linking orientation ( Delaunay Edge-weight linking graph Text line multi-orient Word Multi-orient
: (0.609@7. 14fpS) Image |triangulation|™| Generation Generauon text-line boxes| " | partition |~ | word boxes
Zhang et al. [48] Fine-scale
¢ (0.532@0.4761ps) Speed (FPS) ) . Connectionist Text | text proposals Text-line | Horizontal
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|
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Figure 2. Comparison of pipelines of several recent works on scene text detection: (a) Horizontal word detection and recognition pipeline
proposed by Jaderberg et al. [12]; (b) Multi-orient text detection pipeline proposed by Zhang et al. [48]; (c) Multi-orient text detection
pipeline proposed by Yao ef al. [41]; (d) Horizontal text detection using CTPN, proposed by Tian et al. [34]; (e) Our pipeline, which
eliminates most intermediate steps, consists of only two stages and is much simpler than previous solutions.

EAST: An Efficient and Accurate Scene Text Detector, Zhou etc, CVPR 2017

https://arxiv.org/abs/1704.03155



One Stage Detector: YOLO
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You Only Look Once: Unified, Real-Time Object Detection, Redmon etc, CVPR 2016
Face" [/

https://arxiv.org/abs/1506.02640



One Stage Detector: YOLO

448

]
o |
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Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

You Only Look Once: Unified, Real-Time Object Detection, Redmon etc, CVPR 2016
Face* L/l

https://arxiv.org/abs/1506.02640



One Stage Detector: YOLO

* No Anchor
e GT assignment is based on the cells (7x7)

 Loss sampling
* all pos/neg predictions are evaluated (but more sparse than densebox)

You Only Look Once: Unified, Real-Time Object Detection, Redmon etc, CVPR 2016
Face" [/
https://arxiv.org/abs/1506.02640




One Stage Detector: YOLO

Discussion
e fcreshape (4096-> 7x7x30)

* more context
* but not fully convolutional

* One cell can output up to two boxes in one category
* fail to work on the crowd case

* Fast speed

* smallimagenet base model
 small input size (448x448)

You Only Look Once: Unified, Real-Time Object Detection, Redmon etc, CVPR 2016
Face" [/
https://arxiv.org/abs/1506.02640




One Stage Detector: YOLO

Experiments on general detection

Method VOC 2007 test VOC 2012 test COCO time

YOLO 57.9/NA 52.7/63.4 NA fps: 45/155

You Only Look Once: Unified, Real-Time Object Detection, Redmon etc, CVPR 2016
Face" [/

https://arxiv.org/abs/1506.02640



One Stage Detector: YOLO -> YOLOv2

YOLO YOLOvV2
batch norm? v v

hi-res classifier? v
convolutional?
anchor boxes?

new network?
dimension priors?
location prediction?
passthrough?
multi-scale?

hi-res detector?
VOC2007 mAP | 634 [65.8 69.5 69.2 696 744 754 76.8

o R
R B R A

SRS SRS
AEEE R E
RS KR
R R NE NN

~l

6

Table 2: The path from YOLO to YOLOv2. Most of the listed design decisions lead to significant increases in mAP. Two
exceptions are switching to a fully convolutional network with anchor boxes and using the new network. Switching to the
anchor box style approach increased recall without changing mAP while using the new network cut computation by 33%.

F

YOLO9000: Better, Faster, Stronger Redmon etc, CVPR 2016
ace™ |/ :

https://arxiv.org/abs/1612.08242



One Stage Detector: YOLO -> YOLOv2

Experiments:

Method VOC 2007 test VOC 2012 test COCO time
YOLO 52.7/63.4 57.9/NA NA fps: 45/155
YOLOvV2 78.6 73.4 21.6 fps: 40

YOLO9000: Better, Faster, Stronger Redmon etc, CVPR 2016

https://arxiv.org/abs/1612.08242



One Stage Detector: YOLO -> YOLOv2

Video demo: https://pjreddie.com/darknet/yolo/

YOLO9000: Better, Faster, Stronger Redmon etc, CVPR 2016
Face" [/ 0

https://arxiv.org/abs/1612.08242
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One Stage Detector: SSD
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SSD: Single Shot MultiBox Detector, Liu etc
https://arxiv.org/pdf/1512.02325.pdf

(c) 4 x 4 feature map




One Stage Detector: SSD

Extra Feature Layers
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Face++ B' *nl SSD: Single Shot MultiBox Detector, Liu etc, ECCV 2016

https://arxiv.org/pdf/1512.02325.pdf




One Stage Detector: SSD

e Anchor

 GT-anchor assignment

 G@GTis predicted by one best matched (IOU) anchor or matched with an
anchor with IOU > 0.5

e Dbetter recall
 dense or sparse anchor?

* Divide and Conquer
* Different layers handle the objects with different scales
* Assume small objects can be predicted in earlier layers (not very strong
semantics)
* Loss sampling

 OHEM: negative positions are sampled (not balanced pos/neg ratio)
* negative:posis at most 3:1

Face'H' B' *nl SSD: Single Shot MultiBox Detector, Liu etc, ECCV 2016
https://arxiv.org/pdf/1512.02325.pdf



One Stage Detector: SSD

Discussion:

* Assume small objects can be predicted in earlier layers (not very
strong semantics) (DSSD, RON, RetinaNet)

e strong data augmentation

VGG model (Replace by resnet in DSSD)

* cannot be easily adapted to other models
* alot of hacks

* Along tail (Large computation)

Face' B""*nl SSD: Single Shot MultiBox Detector, Liu etc, ECCV 2016
https://arxiv.org/pdf/1512.02325.pdf



One Stage Detector: SSD

Experiments

Method VOC 2007 test VOC 2012 test COCO
YOLO 52.7/63.4 57.9/NA NA
YOLOV2 78.6 73.4 21.6
SSD 77.2/79.8 75.8/78.5 25.1/28.8

Face' B""*nl SSD: Single Shot MultiBox Detector, Liu etc, ECCV 2016
https://arxiv.org/pdf/1512.02325.pdf

time (fps)
45/155
40

46/19



One Stage Detector: SSD -> DSSD

++ ""
Face B *m DSSD : Deconvolutional Single Shot Detector, Fu etc 2017,

https://arxiv.org/abs/1701.06659



One Stage Detector: DSSD

Experiments

Method VOC 2007 test VOC 2012 test COCO
YOLO 52.7/63.4 57.9/NA NA
YOLOV2 78.6 73.4 21.6
SSD 77.2/79.8 75.8/78.5 25.1/28.8
DSSD 81.5 80.0 33.2

++ ""
Face B *m DSSD : Deconvolutional Single Shot Detector, Fu etc 2017,

https://arxiv.org/abs/1701.06659

time (fps)
45/155
40

46/19
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One Stage Detector: SSD -> RON

4 conv4 convs conv6 conv7
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Figure 2. RON object detection overview. Given an input image,
the network firstly computes features of the backbone network.
Then at each detection scale: (a) adds reverse connection; (b)
generates objectness prior; (c) detects object on its corresponding
CNN scales and locations. Finally, all detection results are fused

Fa C e++ BJ"'*n and selected with non-maximum suppression.
JJ RON: Reverse Connection with Objectness Prior Networks for Object Detection, Kong etc, CVPR 2017

https://arxiv.org/pdf/1707.01691.pdf




One Stage Detector: RON

e Anchor

* Divide and conquer ——
* Reverse Connect (similar to FPN) ba"" Propagation

* Loss Sampling % mapping
* Objectness prior

* pos/neg unbalanced issue H

e splitto 1) binary cls 2) multi-class cls

objectness prior

eature maps%:; J

=

++ ""
Face B *m RON: Reverse Connection with Objectness Prior Networks for Object Detection, Kong etc, CVPR 2017

https://arxiv.org/pdf/1707.01691.pdf




One Stage Detector: RON

Experiments

Method VOC 2007 test VOC 2012 test COCO time (fps)
YOLO 52.7/63.4 57.9/NA NA 45/155
YOLOv2 78.6 73.4 21.6 40

SSD 77.2/79.8 75.8/78.5 25.1/28.8 46/19
DSSD 81.5 80.0 33.2 5.5

RON 81.3 80.7 27.4 15

++ ""
Face B *m RON: Reverse Connection with Objectness Prior Networks for Object Detection, Kong etc, CVPR 2017

https://arxiv.org/pdf/1707.01691.pdf
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Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 — p)” to the standard cross entropy criterion.
Setting v > O reduces the relative loss for well-classified examples
(p = .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

https://arxiv.org/pdf/1708.02002.pdf

One Stage Detector: SSD -> RetinaNet

38r
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RetinaMNet-101
36+ ’
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O [FIDSSD513[9]  [332 156
[G] FPN FRCN [19]|36.2 172
30+ @ RetinaNet-50-500 |3235 73
RetinaNet-101-500 [344 90
RetinaNet-101-800 [37.8 198
28 @ FNot plotted  *Extrapolated time
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Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.
Enabled by the focal loss, our simple one-stage RefinaNet detec-
tor outperforms all previous one-stage and two-stage detectors, in-
cluding the best reported Faster R-CNN [27] system from [19]. We
show variants of RetinaNet with ResNet-50-FPN (blue circles) and
ResNet-101-FPN (orange diamonds) at five scaleg (400-800 pix-
els). Ignoring the low-accuracy regime (AP<25), RetinaNet forms
an upper envelope of all current detectors, and a variant trained for
longer (not shown) achieves 39.1 AP. Details are given in §5.

Focal Loss for Dense Object Detection, Lin etc, ICCV 2017



One Stage Detector: SSD -> RetinaNet

-« 7| /1 /|

o subnet
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Figure 3. The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) [19] backbone on top of a feedforward
ResNet architecture [15] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two
subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes to ground-truth object boxes (d). The network
design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our
one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [19] while running at faster speeds.

Face++ B' *E]J Focal Loss for Dense Object Detection, Lin etc, ICCV 2017

https://arxiv.org/pdf/1708.02002.pdf




One Stage Detector: RetinaNet

 Anchor
* Divide and Conquer
* FPN

* Loss Sampling

* Focal loss
* pos/neg unbalanced issue
* new setting (e.g., more anchor)

Face""" B' *nl Focal Loss for Dense Object Detection, Lin etc, ICCV 2017
https://arxiv.org/pdf/1708.02002.pdf



One Stage Detector: RetinaNet

Experiments

Method VOC 2007 test VOC 2012 test COCO
YOLO 52.7/63.4 57.9/NA NA
YOLOV2 78.6 73.4 21.6
SSD 77.2/79.8 75.8/78.5 25.1/28.8
DSSD 81.5 80.0 33.2
RON 81.3 80.7 27.4
RetinaNet NA N 39.1

Face""" B' *nl Focal Loss for Dense Object Detection, Lin etc, ICCV 2017
https://arxiv.org/pdf/1708.02002.pdf

time (fps)
45/155
40

46/19
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One Stage Detector: SFace

* Integrate Anchor-free and Anchor-based idea to address the scale
issue in face detection '

SFace: An Efficient Network for Face Detection in Large
Scale Variations

Jianfeng Wang, Ye Yuan, Boxun Li, Gang Yu, Sun Jian
https://arxiv.org/pdf/1804.06559.pdf

Face™ LY
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One Stage Detector: SFace

e Standard face sizes:
* Anchor based solution
* Good performance
 Too small/Large faces:

* Anchor-free based solution
* Flexible, Fast speed for inference

Fa Ce++ B n SFace: An Efficient Network for Face Detection in Large Scale Variations
Jianfeng Wang, Ye Yuan, Boxun Li, Gang Yu, Sun Jian

https://arxiv.org/pdf/1804.06559.pdf



One Stage Detector: SFace

P3-P5 layver  re-score  Anchor-based Branch  Anchor-free Branch | AP (easy) AP (medium) AP (hard)

RetinaNet 02.6 91.2 65.0
RetinaNet(multi-scale) 9.7 90.3 75.2
RetinaNet v 43.8 64.9 4.7
UnitBox 70.6 76.0 678

SFace v v 43.5 64.4 73.7

SFace v v 7.6 78.1 3.7

SFace v v v 71.6 78.1 738

SFace v v v 39.5 62.4 729

SFace v v v 90.0 SX.R T8RS

SFace v v v v 898 88.7 80.7

Table 3. The ablation study of SFace on the WIDER FACE validation dataset.

Min size 1080 1200 1500 2160
Time 12.46ms 14.30ms 21.53ms 41.13ms
AP (WIDER FACE hard) 76.7 78.4 80.7 78.8

Fa Ce++ BJ"'%”I SFace: An Efficient Network for Face Detection in Large Scale Variations

Jianfeng Wang, Ye Yuan, Boxun Li, Gang Yu, Sun Jian
https://arxiv.org/pdf/1804.06559.pdf



One Stage Detector: Summary

* Anchor

* No anchor: YOLO, densebox/unitbox/east

* Anchor: YOLOv2, SSD, DSSD, RON, RetinaNet
* Divide and conquer

* SSD, DSSD, RON, RetinaNet
* |oss sample

* all sample: densebox
e QHEM: SSD
 focal loss: RetinaNet

Face™ LY



One Stage Detector: Discussion

Anchor (YOLO v2, SSD, RetinaNet) or Without Anchor (Densebox,
YOLO)

 Model Complexity

e Difference on the extremely small model (< 30M flops on 224x224 input)
 Sampling
* Application

* No Anchor: Face

e With Anchor: Human, General Detection

* Problem for one stage detector

* Unbalanced pos/neg data
* Pool localization precision

Face™ LY




Two Stages Detector: RCNN

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

Face'H' B' *nl Rich feature hierarchies for accurate object detection and semantic segmentation, Girshirk etc, CVPR 2014

https://arxiv.org/pdf/1311.2524.pdf




Two Stages Detector: RCNN

Discussion

 Extremely slow speed
* selective search proposal (CPU)/warp

* not end-to-end optimized
 Good for small objects

Face'H' B' *nl Rich feature hierarchies for accurate object detection and semantic segmentation, Girshirk etc, CVPR 2014

https://arxiv.org/pdf/1311.2524.pdf



Two Stages Detector: RCNN

Experiments

Method VOC 2007 test VOC 2012 test COCO time (fps)
YOLO 52.7/63.4 57.9/NA NA 45/155
YOLOv2 78.6 73.4 21.6 40

SSD 77.2/79.8 75.8/78.5 25.1/28.8 46/19
DSSD 81.5 80.0 33.2 55

RON 81.3 80.7 27.4 15
RetinaNet NA N 39.1 5

RCNN 66 NA NA 47s

Face" [/

Rich feature hierarchies for accurate object detection and semantic segmentation, Girshirk etc, CVPR 2014
https://arxiv.org/pdf/1311.2524.pdf



Two Stages Detector: RCNN -> Fast RCNN

Face™ LY

&Deep \
ConvNet| |

Rol
pooling
layer |

. projections,

Conv ':“\_
feature map

Outputs: bb OX
softmax regressor

B |

fc chrc

Rol feature
vector

For each Rol

Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (Rols) are input into a fully convolutional
network. Each Rol is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per Rol: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.

Fast R-CNN, Girshick etc, ICCV 2015
https://arxiv.org/pdf/1504.08083.pdf



Two Stages Detector: Fast RCNN

Discussion

* slow speed
» selective search proposal (CPU)

* not end-to-end optimized

* ROl pooling
* alignmentissue
* sampling

e aspect ratio changes

Face""" B' *m Fast R-CNN, Girshick etc, ICCV 2015
https://arxiv.org/pdf/1504.08083.pdf



Two Stages Detector: Fast RCNN

Experiments

Method
YOLO
YOLOv2
SSD
DSSD
RON
RetinaNet

RCNN

Fast RCNN

Face" [/

VOC 2007 test

52.7/63.4

78.6

77.2/79.8

81.5

81.3

NA

66

77.0

VOC 2012 test
57.9/NA

73.4

75.8/78.5

80.0

80.7

N

NA

82.3 (wth coco data)

Fast R-CNN, Girshick etc, ICCV 2015
https://arxiv.org/pdf/1504.08083.pdf

COCO
NA

21.6
25.1/28.8
33.2

27.4

39.1

NA

NA

time (fps)
45/155
40

46/19

5.5

15

47s

0.5s



Two Stages Detector:
RCNN -> Fast RCNN -> FasterRCNN

classifier

proposa%
Region Proposal Network,
feature maps

L

conv layers /

LT 7T

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention’ of this unified network.

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren etc, CVPR 2016
https://arxiv.org/pdf/1506.01497.pdf




Two Stages Detector: Faster RCNN

Discussion

* speed
* selective search proposal (CPU) -> RPN
* alternative optimization/end-to-end optimization

* Recall issue due to two stages detector

++ ""
Face B *m Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren etc, CVPR 2016

https://arxiv.org/pdf/1506.01497.pdf



Two Stages Detector: Faster RCNN

Experiments

Method
YOLO
YOLOvV2
SSD

DSSD
RON
RetinaNet
RCNN

Fast RCNN

Faster RCNN

VOC 2007 test

52.7/63.4

78.6

77.2/79.8

81.5

81.3

NA

66

77.0

73.2

VOC 2012 test
57.9/NA

73.4

75.8/78.5

80.0

80.7

N

NA

82.3 (wth coco data)

70.4

COCO

NA

21.6

25.1/28.8

33.2

27.4

39.1

NA

NA

NA

time (fps)
45/155
40

46/19

5.5

15

47s
0.5s

5

++ ""
ace B *m Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren etc, CVPR 2016
https://arxiv.org/pdf/1506.01497.pdf



Two Stages Detector:

RCNN -> Fast RCNN -> FasterRCNN -> RFCN

top-left  top-center

bottom-right

K(C+1)-d
conv ] / vote softmax
, Rol N — s
pool K 4 C+1
/
feature
maps bd v
C+1 C+1
;r—.f

position-sensitive

E(C—'— 1) sCOre maps

Figure 1: Key idea of R-FCN for object detection. In this illustration, there are £ x k£ = 3 x 3
position-sensitive score maps generated by a fully convolutional network. For each of the k£ x k bins

in an Rol, pooling is only performed on one of the k£ maps (marked by different colors).

https://arxiv.org/pdf/1605.06409.pdf

Face++ B' *nl R-FCN: Object Detection via Region-based Fully Convolutional Networks, Dai etc, NIPS 2016,



Two Stages Detector: RFCN

Discussion

* Share convolution
 fasterRCNN: shared Res1-4 (RPN), not shared Res5 (RCNN)
 RFCN: shared Res1-5 (both RPN and RCNN)
* PSPooling
e alarge number of channels:(7x7xC)xWxH
* Problemsin ROIPooling also exist
* Fully connected vs Convolution

* fc: global context
e conv: can be shared but the context is relative small
* trade-off: large kernel

Face++ B' *nl R-FCN: Object Detection via Region-based Fully Convolutional Networks, Dai etc, NIPS 2016,

https://arxiv.org/pdf/1605.06409.pdf



Two Stages Detector: RFCN

Experiments

Method VOC 2007 test VOC 2012 test COCO time (fps)
YOLO 52.7/63.4 57.9/NA NA 45/155
YOLOvV2 78.6 73.4 21.6 40
SSD 77.2/79.8 75.8/78.5 25.1/28.8 46/19
DSSD 81.5 80.0 33.2 5.5
RON 81.3 80.7 27.4 15
RetinaNet NA N 39.1 5
RCNN 66 NA NA 47s
Fast RCNN 77.0 82.3 (wth coco data) NA 0.5s
Faster RCNN 73.2 70.4 NA 200ms
RFCN 79.5 77.6 29.9 170ms

Face++ B' *nl R-FCN: Object Detection via Region-based Fully Convolutional Networks, Dai etc, NIPS 2016,

https://arxiv.org/pdf/1605.06409.pdf



Two Stages Detector:
RFCN -> Deformable Convolutional Networks

2A(C+1)

y o

= PS Rol r
il el conv Pooling P
O— — > [w[u[~> > >
RN B Yl ™
offsets
/ offsets 1
offset field T offset fields

ACH)
(C+1)
% 2N - i
e )
,,,,,, e e ST T deformable
N deformable convolution conv PSRol Pooling &
' per-Rol —

i per-class output roi score map
input feature map output feature map

input feature map score maps

C+1

F

B' *m Deformable Convolutional Networks, Dai etc, ICCV 2017
https://arxiv.org/abs/1703.06211



Two Stages Detector:
RFCN -> Deformable Convolutional Networks

Figure 6: Each image triplet shows the sampling locations (9% = 729 red points in each image) in three levels of 3 x 3
deformable filters (see Figure 5 as a reference) for three activation units (green points) on the background (left), a small
object (middle), and a large object (right), respectively.

Figure 7: Illustration of offset parts in deformable (positive sensitive) Rol pooling in R-FCN [7] and 3 x 3 bins (red) for an
input Rol (yellow). Note how the parts are offset to cover the non-rigid objects.

Face++ B' *nl Deformable Convolutional Networks, Dai etc, ICCV 2017
https://arxiv.org/abs/1703.06211




Two Stages Detector:
RFCN -> Deformable Convolutional Networks

Discussion

 Deformable pool is similar to ROIAlign (in Mask RCNN)

 Deformable conv
* flexible to learn the non-rigid objects

Deformable Convolutional Networks, Dai etc, ICCV 2017
https://arxiv.org/abs/1703.06211




Two Stages Detector:
RCNN -> Fast RCNN -> FasterRCNN -> FPN

s
predict
/ § v‘,,_/"l;"m:z > dict y g [ ——
//./ j}, i ;//
L ./ LN
(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

Feature Pyramid Networks for Object Detection, Lin etc, CVPR 2017
https://arxiv.org/pdf/1612.03144.pdf



Two Stages Detector: FPN

Discussion

 FasterRCNN reproduced (setting)
* Deeply supervised (better feature)

Face++ B' *nl Feature Pyramid Networks for Object Detection, Lin etc, CVPR 2017
https://arxiv.org/pdf/1612.03144.pdf



Two Stages Detector: FPN

Experiments

Method VOC 2007 test VOC 2012 test COCO time (fps)
YOLO 52.7/63.4 57.9/NA NA 45/155
YOLOV2 78.6 73.4 21.6 40
SSD 77.2/79.8 75.8/78.5 25.1/28.8 46/19
DSSD 81.5 80.0 33.2 5.5
RON 81.3 80.7 27.4 15
RetinaNet NA N 39.1 5
RCNN 66 NA NA 47s
Fast RCNN 77.0 82.3 (wth coco data) NA 0.5s
Faster RCNN 73.2 70.4 NA 200ms
RFCN 79.5 77.6 29.9 170ms

FP NA NA 36.2 6

N
Fa Ce++ B' *nl Feature Pyramid Networks for Object Detection, Lin etc, CVPR 2017

https://arxiv.org/pdf/1612.03144.pdf




Two Stages Detector:
RCNN -> Fast RCNN -> FasterRCNN -> FPN ->
MaskRCNN

class
box
A ,

RolAlign|

conv> conv

Figure 1. The Mask R-CNN framework for instance segmentation.

Mask R-CNN, He etc, ICCV 2017
https://arxiv.org/pdf/1703.06870.pdf




Two Stages Detector:
RCNN -> Fast RCNN -> FasterRCNN -> FPN ->
MaskRCNN

align? | bilinear? | age. | AP APsg9 AP75
RolPool [12] max| 269 48.8 264

v |max| 27.2 492 27.1

RolWarp [10] v ave | 27.1 489 27.1
' v v max| 30.2 51.0 31.8
RolAlign |, 1/ |ave| 303 512 315

(c) RolAlign (ResNet-50-C4): Mask results with various Rol
layers. Our RolAlign layer improves AP by ~3 points and
AP75 by ~5 points. Using proper alignment i1s the only fac-
tor that contributes to the large gap between Rol layers.

Br*m Mask R-CNN, He etc, ICCV 2017

https://arxiv.org/pdf/1703.06870.pdf




Two Stages Detector: Mask RCNN

Discussion

* Alignment issue in ROIPooling -> ROIAlign
 Multi-task learning: detection & mask

Face"“" B' *nl Mask R-CNN, He etc, ICCV 2017
https://arxiv.org/pdf/1703.06870.pdf



Two Stages Detector: Mask RCNN

Experiments

Method VOC 2007 test VOC 2012 test COCO time (fps)
YOLO 52.7/63.4 57.9/NA NA 45/155
YOLOV2 78.6 73.4 21.6 40
SSD 77.2/79.8 75.8/78.5 25.1/28.8 46/19
DSSD 81.5 80.0 33.2 5.5
RON 81.3 80.7 27.4 15
RetinaNet NA N 39.1 5
RCNN 66 NA NA 47s
Fast RCNN 77.0 82.3 (wth coco data) NA 0.5s
Faster RCNN 73.2 70.4 NA 200ms
RFCN 79.5 77.6 29.9 170ms
FPN NA NA 36.2 6
Mask RCNN NA NA 38.2 2.5

Face™ le- *m Mask R-CNN, He etc, ICCV 2017

https://arxiv.org/pdf/1703.06870.pdf



Two Stages Detector: Light Head R-CNN

* Improve Inference speed in detection algorithms

A: Faster RCNN

R-CNN subnet
A classification |
lob. or C H
S - 4
‘ location :
R t-10
B: R-FCN
7$ R-CNN subne!
T S I
1x1 convolution 4 . /1 ‘ H
PSRol pooling | | global average pool o
4 ' | prediction !
l C+1 channels (81 in COCO)

’ P?(C + 1) channels (3969 in MSCOCO)
2048 channels in Resnet-101

C: Our approach Light Head RCNN

nnnnnnnnnnnnnnnnn

st . AW w LT Light-Head R-CNN: In Defense of
L W R i Two-Stage Object Detector, Li etc,
10 or 490 channals https://arxiv.org/pdf/1711.07264.pdf

1in COCO

2048 channels in Resnet-101




Two Stages Detector: Light Head R-CNN

* Improve Inference speed in detection algorithms

40
38} ’
36 il «
a 34
=
o
S Il RetinaNet-50
© 32p RetinaNet-101
¢ Light Head R-CNN
304 o ® 55D321
® DSSD321
-8 B R-FCN*
[ - . ¢ SSD512
@ FPNFRCN Light-Head R-CNN: In Defense of
26o 50 100 150 00 Two-Stage Object Detector, Li etc,

inference time (ms) https://arxiv.org/pdf/1711.07264.pdf



Two Stages Detector: MegDet

* Batchsize issue in general object detection
* Problems in small batch size

* Long training time
* |naccurate BN statistics

* |nbalacned positive and negative ratios

Face""" B' *m MegDet: A Large Mini-Batch Object Detector, Peng etc, CVPR2018
https://arxiv.org/pdf/1711.07240.pdf



Two Stages Detector: MegDet

40 anr'\e~ACCUr?cy

377} poccccccccccccccscccccsccscsccaass -
3624 m=e o
* Dev 1 Dev 2 Dev n
name mmAP | mmAR —— = -J"*\, _L]
. ' DANet 457 | 627 % [4 Sn
§ Trimps-Soushen+QINIU | 48.0 65.4 g
25t : bharat_umd 48.1 64.8 ( Hp
FAIR Mask R-CNN [ 1] 50.3 66.1 / SO P
20} g MSRA 50.4 69.0 DeV 1 DeV 2 Dev n
— 16-batch UCenter 51.0 67.9
— e MegDet (Ensemble) 52.5 69.0 : : =
3 5 10 15 20 25 30 35 g . - V1 ‘ v2 . Vn ‘
— \ . o 7» /
»4: Result of (enhanced) MegDet on test-dev of COCO ‘ of
Figure 1: Validation accuracy of the same FPN object de- €t A \
tector trained on COCO dataset, with mini-batch size 16 Dev 1 Dev 2 BV

(on 8 GPUs) and mini-batch size 256 (on 128 GPUs). The
large mini-batch detector is more accurate and its training
is nearly an order-of-magnitude faster. N Y2 Yn

Face""" B' *m MegDet: A Large Mini-Batch Object Detector, Peng etc, CVPR2018
https://arxiv.org/pdf/1711.07240.pdf




Two Stages Detector: DetNet

 Pretrain the backbone network for Detection
* Problems with the ImageNet pretrain model

* Target for the classification problem, not localization friendly

* Gap between the backbone and detection network
® Notinitialization for P6 (and P7)

* Train the Backbone by maintaining the spatial resolution
(localization) and receptive field (classification)

Face"“" B' *nl DetNet: A Backbone network for Object Detection, Li etc
https://arxiv.org/abs/1804.06215



Two Stages Detector: DetNet

A: Feature Pyramid Networks

14x

—= l 4x
upfax !
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s |
> 16X
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( '
! 32X
64X

Face™ LY

DetNet: A Backbone network for Object Detection, Li etc
https://arxiv.org/abs/1804.06215

B: Classification Network Backbone
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Two Stages Detector: DetNet

A:Dilated bottleNeck B:Dilated bottleNeck with C:Original bottleNeck
1x1 conv projection

‘ 3x3,dilae 2,Corm i diate 2,.Camv | 1x1 Conv ‘ 23, Conw
Ackd Add Akl
v RelU & AeLU & RelU

D: DetNet Backbone

B2 —p AN — A% B,256 —» A2 —» A 256 rees —P  14x14 GAP -—b/
Fully ConMCt
Stage 4 output Stage 5 output Stage 6 output
16x stride 16x stride 16x stride
1x1 conv, 256 1x1 conw, 256 1x1 conw, 258

E: Feature Pyramid Structure

DetNet: A Backbone network for Object Detection, Li etc
https://arxiv.org/abs/1804.06215



Two Stages Detector: DetNet

Models Backbone mAP|(APso|AP75| AP (AP, |AP,
Models scales  |mAP|AP50[APeo|AP70|APso|APss  SSD513 [3] ResNet-101 31.2[50.4 | 33.3 [10.2| 34.5 [49.8
ResNet-50|over all scales| 37.9 | 60.0 | 55.1 | 47.2 | 33.1 | 22.1 DSSD513 [3,37) ResNet-101 33.2 | 53.3 | 35.2 13.0| 35.4 |51.1
small 1229 140.1135.5(28.0117.5 104 pagter R-CNN +++ [11] ResNet-101 34.9 | 55.7 | 37.4 |15.6| 38.7 |50.9
middle 40.6 ( 63.9 1 59.0 1 51.2 | 35.7 [ 23.3 Faster R-CNN G-RMI ? [38]|Inception-ResNet-v2| 34.7 | 55.5 | 36.7 [13.5| 38.1 [52.0
large 1492 R 68.2160.8146.6 345  p.iinaNet [4) ResNet-101 | 39.1|59.1 | 42.3 |21.8|42.7 |50.2
DetNet-59|over all scales| 40.2 | 61.7 | 57.0 | 49.6 | 36.2 [25. 8 FPN [33] ResNet-101 373 159.6 | 40.3 |19.8| 40.2 |48.8
ool (i B B il Bl K DetNet-59  |40.3|62.1 | 43.8 23.6] 42.6 [50.0

middle | 43.2|65.8 |61.2 | 53.6 | 39.9 | 27.3

large  |52.0 | 73.1/69.5| 63 |51.4| 40.0

Table 7. Comparison of object detection results between our approach and state-of-
the-art on MSCOCO test-dev datasets. Based on our simple and effective backbone
DetNet-59, our model outperforms all previous state-of-the-art. It is worth nothing
that DetNet-59 yields better results with much lower FLOPs.

++ B""
FaCe *E]J DetNet: A Backbone network for Object Detection, Li etc

https://arxiv.org/abs/1804.06215



Two Stages Detector: Summary

* Speed
* RCNN -> Fast RCNN -> Faster RCNN -> RFCN -> Light Head R-CNN
 performance

* Divide and conquer
FPN

Deformable Pool/ROIAlign
Deformable Conv
Multi-task learning
Multi-GPU BN

Face™ LY



Open Problem in Detection

e FP
 NMS (detection in crowd)

* CrowdHuman Dataset: https://sshao0516.github.io/CrowdHuman/
* @GT assignment issue

e Detection in video
e detect & track in a network

Face™ LY



Outline

e Detection
e Conclusion




Conclusion

* Detection
 One stage: Densebox, YOLO, SSD, RetinaNet
 Two Stage: RCNN, Fast RCNN, FasterRCNN, RFCN, FPN, Mask RCNN

Face™ LY



Introduction to Face++ Detection Team
* Category-level Recognition

e Detection

* Face Detection:

* FAN: https://arxiv.org/pdf/1711.07246.pdf

» Sface: https://arxiv.org/pdf/1804.06559.pdf
*  Human Detection:

* Repulsion loss: https://arxiv.org/abs/1711.07752

* CrowdHuman: https://arxiv.org/pdf/1805.00123.pdf
 General Object Detection:

» Light Head: https://arxiv.org/pdf/1711.07264.pdf
https://github.com/zengarden/light head rcnn

* MegDet: https://arxiv.org/pdf/1711.07240.pdf
* DetNet: https://arxiv.org/pdf/1804.06215.pdf
* Segmentation
e Large Kernel Matters: https://arxiv.org/pdf/1703.02719.pdf
 DFN: https://arxiv.org/pdf/1804.09337.pdf

e Skeleton:

Face'* BJL*E]; CPN: https://arxiv.org/pdf/1711.07319.pdf

 https://github.com/chenyilun95/tf-cpn
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