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Abstract

In this paper, we introduce a new large-scale object de-
tection dataset, Objects365, which has 365 object cate-
gories over 600K training images. More than 10 million,
high-quality bounding boxes are manually labeled through
a three-step, carefully designed annotation pipeline. It is the
largest object detection dataset (with full annotation) so far
and establishes a more challenging benchmark for the com-
munity. Objects365 can serve as a better feature learning
dataset for localization-sensitive tasks like object detection
and semantic segmentation. The Objects365 pre-trained
models significantly outperform ImageNet pre-trained mod-
els with 5.6 points gain (42 vs 36.4) based on the standard
setting of 90K iterations on COCO benchmark. Even com-
pared with much long training time like 540K iterations, our
Objects365 pretrained model with 90K iterations still have
2.7 points gain (42 vs 39.3). Meanwhile, the finetuning time
can be greatly reduced (up to 10 times) when reaching the
same accuracy. Better generalization ability of Object365
has also been verified on CityPersons, VOC segmentation,
and ADE tasks. The dataset as well as the pretrained-
models have been released at www.objects365.org.

1. Introduction

Object detection is a fundamental task in computer vi-

sion. PASCAL VOC [8] and COCO [24], have contributed

greatly to rapid advances of object detection. From tradi-

tional approaches like DPM [9] to deep-learning based ap-

proaches like R-CNN [13] and FPN [22], the above two

datasets serve as “golden” benchmarks to evaluate algo-

rithms and boost research progresses. In this paper, we

move a step further to introduce a new large-scale, high-

quality object detection dataset, Objects365, which focuses

on three aspects: scale, quality, and generalization.

Scale. Objects365 is significantly larger than the exist-

∗indicates equal contribution.
†Corresponding Author.

27.7

35.3
37.9 38.7 39.4

36.4

38.3 38.8 39.3 39.3

39.0 
40.0 41.1 42.0 

39.8

40.7
41.6 42.3

31.1

33

35.9
37.4

25

30

35

40

45

0 K 60 K 120 K 180 K 240 K 300 K 360 K 420 K 480 K 540 K

m
m

AP
on

 C
OC

O

Iterations After Convergence

from scratch
from ImageNet
from Objects365
from ImageNet -> Objects365
from ImageNet -> OpenImages

Figure 1. Results of finetuning COCO from ImageNet vs Ob-

jects365. With a small number of iterations, 90K, for training, our

Objects365 pre-trained model (green curve) can significantly out-

perform the algorithm finetuned from ImageNet (orange curve),

even with much longer training time, e.g., 540K iterations. All

results use a FPN based Resnet50 backbone.

ing object detection benchmarks like PASCAL and COCO.

It contains 365 categories, 638K images, and 10, 101K
bounding boxes. We compare our dataset with existing ob-

ject detection benchmarks with full annotations in Table 1.

Our dataset contains 5× more images, 4× more categories,

and 10× more boxes than COCO [24]. It can serve as a

more challenging benchmark for the detection community.

Quality. In addition to the size, annotation quality is of

great importance when building a dataset. To ensure qual-

ity, we divide the annotation pipeline into three steps, which

can significantly reduce the job requirement for the annota-

tors. Besides the annotators, we also include inspectors and

examiners to review the quality of the annotations. To re-

duce ambiguities during the annotation process, we apply

two consistency rules. This annotation pipeline ensures that

we obtain high-quality annotation with high efficiency.

Generalization. The feature learned from Objects365

is superior for many localization-sensitive tasks like ob-

ject detection and semantic segmentation. Convention-

ally, ImageNet [5] pre-trained basenets like Resnet [17]

are widely employed as a backbone for the object de-



tection/segmentation algorithms. However, there are two

issues related to ImageNet pretraining. On one hand,

the feature learned on ImageNet classification task is less

localization-sensitive. On the other hand, only the back-

bone part are pre-trained but the head part is initialized with

the random weights.

Our Objects365 dataset directly addresses the above two

issues and provides a better alternative for feature learning.

As shown in Figure 1, the Objects365 pre-trained features

can significantly outperform the counterparts based on Im-

ageNet, even the one with sufficient longer training time

(540K iterations) as discussed in [15]. Moreover, using Ob-

jects365 feature, we can obtain comparable results with one

order-of-magnitude less training time.

2. Related Work
General Object Detection Object detection task has been

a fundamental research topic for a while. DPM [9] is one

of the most famous object detection algorithms to be used

before the introduction of deep learning techniques. R-

CNN [13] is one of the first work to integrate the convo-

lutional neural network for object detection. Later, with the

rapid development of convolutional neural network, most

object detection algorithms started to utilize deep learn-

ing techniques. Roughly, we can divide the existing ob-

ject detection algorithms into two categories: single-stage

detector and two-stage detector. The main difference lies

on whether to pool the feature maps for a second stage.

SSD [25], DSSD [10] and YOLO series [27, 28, 29] are

some widely used single-stage detector with efficient speed.

RetinaNet [23] is introduced with strong performance even

compared with the two-stage detector. For the two-stage

detector, the early work like Fast R-CNN [12], Faster R-

CNN [30], R-FCN [3], try to speed up the algorithms. In

FPN [22] and Mask R-CNN [16], feature pyramid structure

and ROI-Align are proposed to boost the performance. De-

formable ConvNet [4, 39], Soft Sampling [34], SNIP [32],

SNIPER [33], and Cascade R-CNN [1], DetNet [21] are in-

troduced to further improve the performance.

Large-scale Detection Dataset The large-scale dataset is

an important reason for the continuous improvement of the

object detection algorithms, especially for deep learning

based techniques. From early datasets like ImageNet [5],

VOC [8], to the recent benchmarks like COCO [24], they all

play an important role in the image classification and object

detection community. In Table 1, we give statistics of the

existing object detection benchmarks together with our Ob-

jects365 benchmark. Our Objects365 dataset has around 60

times images larger than PASCAL VOC and 5 times larger

than COCO. Compared with the ImageNet DET dataset [5],

our dataset has a larger number of boxes per image, with

15.8 vs 1.1 (2.3 for the Dense set).

Besides the general object detection datasets, there are

also a lot of other detection benchmarks like face detec-

tion [19, 35], pedestrian detection [7, 36, 31], and hu-

man/vehicle detection for the autonomous driving [11, 2],

all of which play an important role in the detection commu-

nity.

3. Objects365 Dataset

In this section, we present the details on the collection,

annotation, statistics, and quality of the dataset respectively.

3.1. Data Collection

3.1.1 Data Source

To make the image sources more diverse, we collect images

mainly from Flicker 1. All the images conform to licensing

for research purposes. Sample images can be found on our

website2.

3.1.2 Object Categories

Based on the collected images, we first select eleven super-

categories which are common and diverse to cover most ob-

ject instances. They are: human and related accessories,

living room, clothes, kitchen, instrument, transportation,

bathroom, electronics, food (vegetables), office supplies,

and animal. Based on the super-categories, we further pro-

pose 442 categories which widely exists in our daily lives.

As some of the object categories are rarely found, we first

annotate all 442 categories in the first 100K images and then

select the most frequent 365 object categories as our tar-

get objects. Also, to be compatible with the existing object

detection benchmarks, the 365 categories include the cate-

gories defined in PASCAL VOC [8] and COCO [24] bench-

marks.

3.1.3 Non-Iconic Images

As our Objects365 dataset focuses on object detection, we

eliminate those images which are only suitable for image

classification. For example, the image only contains one

object instance around the image center. This filtering pro-

cess was first adopted in COCO [24].

3.2. Annotation

As there are a large number of images and object cate-

gories, a good annotation process is of great importance to

ensure high quality and efficiency.



Dataset Images Boxes Categories Boxes/img Fully Annotated

Pascal VOC 11.5k 27k 20 2.4 Yes

ImageNet All 477k 534k 200 1.1 Yes

ImageNet Dense 80k 186k 200 2.3 Yes

COCO 123k 896k 80 7.3 Yes

OpenImages 1,515k 14,815k 600 9.8 Partial

Objects365 638k 10,101k 365 15.8 Yes
Table 1. Comparison of the dataset statistics with existing object detection benchmarks. The table includes statistics for training and

validation sets.
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Figure 2. Our annotation pipeline for Objects365.

3.2.1 Annotation Pipeline

It is almost impossible for an annotator to remember and

annotate all 365 categories. Also, a small number of im-

ages should be rejected due to the iconic images or the im-

ages without 365 object categories. Motivated by existing

datasets like ImageNet [5] and COCO [24] as well as the

discussion of scalable multi-class annotation in [6], we de-

sign our annotation pipeline as the following three steps.

The first step performs a two-class classification. If the im-

age is non-iconic or contains at least one object instance

in the eleven super-categories, it will be passed to the next

step. In the second step, the image-level tags with the eleven

super-categories will be labeled. An image may be labeled

with more than one tag. In the third step, one annotator

will be assigned to label the object instances in one spe-

cific super-category. All object instances belonging to the

super-category should be labeled with a bounding box to-

gether with an object name. An illustration of our annota-

tion pipeline is in Figure 2.

Based on the proposed annotation pipeline, each anno-

tator only needs to be familiar with the object categories

in one super-category rather than all 365 object categories.

This will not only improve annotation efficiency but also

boost annotation quality.

3.2.2 Annotation Team

We divide all the team members (hired as vendors) into

three groups: annotators, inspectors, examiners. All the im-

ages are first annotated by the annotators, and then checked

1https://www.flickr.com/
2https://www.objects365.org

by the inspectors. By accumulating around 100 labeled (and

checked) images as a job, we involve the examiner to fur-

ther review the quality of the annotation. The job will be

rejected if any of the steps exists annotation error.

Annotator The annotators need to perform the annota-

tion which involves all three steps in the annotation pipeline

shown in Figure 2. Each annotator will be assigned one and

only one annotation task. Before starting the annotation,

they should take a course and pass an examination to be

qualified for the annotation.

Inspector The work of inspector is to examine all the an-

notated images labeled by the annotators. If an annotation

error is found in one image, the image will be rejected and

annotated again by the same annotator. This refining step

can greatly prevent the annotator from making the same

mistakes in the following annotation process.

Examiner Examiners are usually geographically isolated

from the annotators and inspectors to make a fair judgment.

The job, which usually contains around 100 images verified

by the inspectors, will be reviewed again by the examiner.

If an annotation error is found in one image, the whole job

which includes the mislabeled image will be rejected. The

rejection rate of the jobs is one of the key factors to deter-

mine the income for the annotators and inspectors.

3.2.3 Annotation Process Consistency

Due to the large scale of the dataset, there will be a lot of

annotators involved in this project. Without consistent defi-

nition and rules for the annotation, the labeling for the same

image will provide different annotation results. To reduce

the ambiguities during the annotation process, we define a

number of rules. Two important rules are: classification rule

and bounding-box rule.

Classification Rule It defines a clear priority order with

function-first principle for the ambiguity case in labeling.

For instance, in the left Figure 3, the object can be consid-

ered as either “tap” or “teapot”. Based on our classification

rule, we use the function-first principle and the object will

be labeled as “tap” in this case.



Figure 3. An example showing our function-first consistency rule.

In the left figure, the object in the blue bounding-box will be anno-

tated as “tap” rather than “teapot” while the green bounding box

will be annotated as “toy” instead of “bear” in the right figure.

Figure 4. An example of our bounding-box consistency rule.

Train Validation Test

Images 600k 38k 100k

Boxes 9623k 479k 1700k
Table 2. The split of our Objects365 benchmark.

Bounding Box Rules Due to the diversity of annotators,

the annotation for the bounding-boxes might be inconsistent

sometimes. We define the following rule when ambiguities

exist for the bounding-box. The annotator is required to

cover the largest bounding box which would not lead to the

ambiguities of defining the object category. For example,

we need to include the decoration part of the clock in the

left figure of Figure 4 as the decoration part belongs to the

clock and would not lead to misunderstanding of the object

category. For the right figure of Figure 4, the annotators

are required to label the small bounding box because the

external area of the clock will lead to another category as

“tower”.

3.3. Statistics

Based on our proposed annotation pipeline, around 740K

images are annotated in our Objects365 dataset. A split of

train, validation, test set is in Table 2. There are 600K im-

ages for training, 38K images for validation, and another

100K images for testing.

To delve into the details of our Objects365, we first pro-

vide the statistics of the number of object categories per im-

age. According to Figure 5, Objects365 is more dense and

diverse than VOC [8], COCO [24], and OpenImages [20].

Quantitatively, our Objects365 has 5 categories (on aver-
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Figure 5. A comparison with the statistics of the number of object

categories per image. Objects365 is more dense, with a modal on

5 categories per image, and more diverse, with a more flat curve.

age) per image, which is more dense compared with the

other object detection benchmarks like VOC and COCO.

Due to the partial annotation used in OpenImages, the cat-

egory number/image of OpenImages is lower than COCO

and Objects365 even though there are 600 categories de-

fined in OpenImages. Moreover, based on the curve in Fig-

ure 5, the variance of the number of object categories per

image from our Objects365 is significantly larger than the

existing benchmarks, which shows the diverse nature of our

Objects365 dataset.

For the image resolution, Figure 6 shows that Objects365

has larger and more diverse image resolutions.
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Figure 6. Distribution of the image resolution.

Figure 7 provides a comparison of “effective annota-

tions” with the PASCAL VOC and COCO benchmark. By

selecting the COCO 80 categories from Objects365, i.e.,

ignoring the other object categories, our dataset has more

boxes per image, i.e., 9.04 vs 7.34, as well as more object

categories per image, 3.16 vs 2.92. A similar conclusion

can be obtained by mapping the object categories into the

VOC 20 categories. We also compare the effective annota-

tion areas, i.e., the ratio of annotated object areas to the total

area of the images. Our Objects365 provides obvious more

annotations 63% compared with 57% in COCO and 53% in

VOC.
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with VOC and COCO datasets.

3.4. Quality

To validate the quality of our Objects365 dataset, three

well-trained annotators are asked to label 200 randomly

selected images. In total, there are 3250 bounding-boxes

based on the refinement from the annotators. 92% of in-

stances are annotated in the original annotations. A com-

parison of annotation recall with COCO and OpenImages

can be found in Table 3.
Table 3. Comparison of annotation recall.

Dataset OpenImage COCO Objects365

Recall(%) 43 83 92

For the annotation precision, we consider a false positive

if the object category is wrong or the annotation bounding-

box is not accurate. The precision of our Objects365 is ob-

viously higher than COCO with 91.7% vs 71.9%.

4. Experiment
As Objects365 is a new benchmark, we first provide

the baseline results based on two widely used detectors,

FPN [22] and RetinaNet [23]. Then, we study the gener-

alization ability.

4.1. Experiment Setup

The COCO style mmAP is adopted to evaluate the per-

formance of our Objects365 benchmark. More specifically,

we average the IoU=.50:.05:.95 for all the object categories.

For the implementation details, we follow the setting de-

fined in Detectron [14, 15] for COCO. We train our detector

on 8 1080-Ti GPUs, with a batch-size of 16. The input im-

age size is 800×1333, which is also the same in the training

process and testing process. A similar setting is utilized for

training Objects365 except for the learning rate schedule,

where we adopt a learning rate of 0.02, decreased by a fac-

tor of 10 at 900K and 1200K, and stopped at 1350K itera-

tions. To speed up the convergence, we apply Syn the Batch

Normalization technique in [26]. For the other datasets, we

follow the standard setting.

4.2. Results on Object365

In Table 4, we compare the results of FPN and Reti-

naNet. The algorithms are trained on the Objects365 train-

ing set and the results are reported on the Objects365 val-

idation set as described in Table 2. The mmAP for FPN

is 22.5, which is significantly lower than the result on the

COCO benchmark (38.3). This shows that our benchmark is

more challenging. To analyze the results of our Objects365

dataset, we select the 80 categories defined in COCO from

the 365 categories and obtain the mmAP of 38.5 for FPN,

34.5 for RetinaNet, which is comparable to the results on

the COCO benchmark. We can see that the low mmAP

score on Objects365 is due to the large number of categories

in Objects365 dataset, especially those categories which are

not defined in COCO dataset.

In addition, we perform diagnosis based on [18] and the

results can be found in Figure 8. By comparing the result

on Objects365 (left) and the result on COCO (right), we

can see that the main gap for the low performance for Ob-

jects365 lies on the recall (the gap between BG and FN).

A large number of object instances have been missed in our

Objects365 dataset. Also, there exist a few object categories

which do not have any positive matches, like radish and

saw. In Figure 9, we show three examples for the results on

the Objects365. We can see that the false negative may ex-

ist in small objects like glove/skis as well as the rare objects

like antelope/swing.

4.3. Generalization Ability of Object365

In this sub-section, we study the generalization ability

of Object365 as the pretraining dataset for object detection

and semantic segmentation. For the detection problem, we

select COCO and Pascal VOC to evaluate the general object

detection, CityPersons to evaluate the ability on the pedes-

trian detection. For semantic segmentation, two standard

benchmarks like PASCAL VOC and ADE are adopted.

4.3.1 Learning Rate Strategy

We will first discuss how to design the learning rate strategy

for finetuning. Let us take the COCO dataset as an exam-

ple. First, we simply adopt the standard learning rate strat-

egy in [14] for a finetuning experiment. As shown in Ta-

ble 5, this standard fine-tune strategy based on Objects365

(the third column in Table 5) only provides a small improve-

ment (40.4 vs 39.3) compared with the ImageNet pretrain-

ing (shown in the second column of Table 5 with 540K iter-

ations training for the COCO dataset).

To further exploit the finetuning capability of Ob-

jects365, we analyze the difference between Objects365



Method mmAP AP 50 AP 75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

FPN 22.5 35.5 24.3 12.8 24.4 32.8 23.0 36.7 38.1 25.2 40.7 49.8

RetinaNet 18.7 27.3 20.4 9.0 21.1 28.8 21.3 33.3 34.4 19.0 38.4 50.1
Table 4. Results of the baseline algorithms on the Objects365 dataset.
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Figure 8. Diagnosis results on Objects365 and COCO. Three figures denote the result on Objects365 (left), the result on COCO with the

model pretrained from ImageNet (middle), the result on COCO with the model pretrained from Objects365 (right). All the algorithms are

implemented with FPN based on Resnet50 backbone.

Pretraining Dataset ImageNet Obj365 Obj365

mmAP 39.3 40.4 42.0

lr@begining 0.02 0.02 0.003
lr@convergence 0.0002 0.0002 0.00012
L2@beginning (1e3) 5.67 0.85 0.85

L2@convergence (1e3) 1.42 1.3 0.85
Table 5. A comparison of different learning rate strategies for fine-

tuning on the COCO benchmark. We list the L2-Norm of the

weights from the pretrained model of ImageNet and Objects365

at the beginning and convergence of the training. From left to

right, these three fine-tuning experiments take 540K, 180K and

90K iterations, respectively.

pre-trained weights and ImageNet pre-trained weights. As

shown in the last row of the Table 5, we find that the pre-

trained weights from Objects365 have much smaller L2-

Norm compared with the ImageNet pre-trained weights. It

is about 0.15 times smaller (0.85 vs 5.67) at the beginning

of training. Intuitively, the smaller weights usually require

a smaller learning rate to train. Therefore, we propose to

use a smaller learning rate for Objects365 pre-trained mod-

els. Specifically, we design the learning rate according to

the ratio of the pre-trained weights’ L2-Norm between Ob-

jects365 and ImageNet. At the beginning of the training, we

multiply the original learning rate with the L2-norm ratio of

0.15 and set the new learning rate as 3e−3 = 0.15 × 0.02.

We decrease the learning rate by multiplying 1/5 twice dur-

ing the training process. As Table 5 shows, our new learn-

ing rate strategy (the fourth column) can further improve

the finetuning capability of the Objects365, which yields a

large gain (42.0 vs 40.4).

4.3.2 Finetuning Results

COCO Detection According to Table 6, our Objects365

dataset shows strong generalization ability. Compared with

Method Pretrain Dataset Iters mmAP

FPN None 540K 39.4

FPN ImageNet 90K 36.4

FPN ImageNet 180K 38.3

FPN ImageNet 540K 39.3

FPN OpenImages 90k 37.4

FPN Objects365 w/o COCO 80 90K 39.6

FPN Objects365 90K 42.0

FPN ImageNet -> Objects365 90K 42.3
RetinaNet ImageNet 180K 37.0

RetinaNet Objects365 180K 39.5

RetinaNet ImageNet -> Objects365 90K 41.0
Table 6. Generalization ability of general object detection results

on the COCO dataset. “Iters” denotes the number of iterations for

finetuning the models on the COCO dataset.

FPN and RetinaNet baseline, our finetuned model can sig-

nificantly boost the performance, with 5.6 points (42 vs

36.4) over the baseline for FPN with the 90K iterations, and

2.5 points (39.5 vs 37) for RetinaNet with the 180K itera-

tions. By pretraining the Objects365 dataset which removes

the 80 categories from COCO (Objects365 w/o COCO 80),

we can still achieve competitive results with 39.6 on the

COCO benchmark. Compared with OpenImages, our Ob-

jects365 benchmark has much higher performance gain. By

involving ImageNet Pretraining before Objects365, we can

slightly improve the FPN with 0.3 (42.3 vs 42). But for the

RetinaNet, whose parameters mainly lie on the backbone

part, the ImageNet pretraining before Objects365 can fur-

ther bring in 1.5 points gain (41 vs 39.5).

According to Figure 8 (middle and right figures), the

Objects365 pretrained model (right figure) can significantly

improve the classification ability of the ImageNet pretrained

model (middle figure). The performance gain is mainly due

to two factors: the large number of object categories and the



Figure 9. An illustration of the results on the Objects365 dataset. FPN with Resnet50 backbone is utilized. The green bounding-boxes

denote the ground-truth (GT) which are positive matched by the predicted bounding-boxes colored with light-blue. Red and blue bounding-

boxes denote the false negative GT and false positive predictions, respectively.

Pretraining Dataset mAP

None 63.4

ImageNet 80.2

ImageNet -> COCO 540K iters 85.1

OpenImages 82.4

Objects365 86.2

ImageNet -> Objects365 86.7
Table 7. Generalization ability of object detection results on the

PASCAL VOC dataset. The results are implemented based on

FPN with Resnet50 backbone.

improvement of localization ability. According to the gap

between “FN” and “Loc”, the Objects365 pretrained model

can remarkably improve 2.9 points from 0.689 to 0.718 due

to the improvement of the classification ability by involv-

ing more object categories. Also, the localization ability is

improved by 0.9 if we compare the gap between C75 and

Loc.

VOC Detection As shown in Table 7, our Objects365

can provide superior finetuning ability compared with Ima-

geNet and OpenImages. More specifically, we have 6 points

gain (86.2 vs 80.2) compared with the ImageNet pre-trained

model and more than 1.1 points gain (86.2 vs 85.1) com-

pared with the COCO 540K iterations finetuned model.

CityPersons Besides general object detection, it is also

important to validate the generalization ability on the spe-

cific object detection problem like pedestrian detection.

In this experiment, we adopt CityPersons [36], one of the

standard benchmarks for pedestrian detection. The evalua-

tion follows MR (miss-rate), which is widely used in the

pedestrian detection community. We employ FPN as our

baseline algorithm. We train the network for 180k itera-

tions.

Table 8 shows the results of pedestrian detection on the

CityPersons dataset. We find that pretraining with Ob-

jects365 can significantly outperform the baseline algo-

Pretraining Dataset MR

None 39.49

ImageNet 18.04

ImageNet -> COCO 540K iters 16.24

OpenImages 16.78

Objects365 12.12
ImageNet -> Objects365 12.52

Table 8. Generalization ability of pedestrian detection results on

the CityPersons dataset. The results are implemented based on

FPN with Resnet50 backbone.

rithms with more than 4 points gain.

VOC Segmentation In addition to the generalization

ability for the detection task, we also validate the general-

ization ability of our Objects365 based on two semantic seg-

mentation benchmarks: PASCAL VOC [8] and ADE [38].

PASCAL VOC contains 20 object categories with pixel-

level annotations. The metric of mIOU (mean Intersection-

over-Union) is employed to evaluate the performance. PSP-

Net [37] with Resnet50 backbone is adopted as the baseline

algorithm.

According to Table 9, our algorithm can provide mean-

ingful performance gain by pretraining the backbone part

based on Objects365. More specifically, we have more

than 2 points over the ImageNet pre-trained (76.7 vs 74.5)

and OpenImages pre-trained (76.7 vs 74.1) models, and 1.8

points (76.7 vs 74.9) over the COCO 540K iterations fine-

tuned model.

ADE ADE [38] is a scene parsing dataset introduced in

2017 with around 20K training images from 150 object cat-

egories. We report the results on the validation set with

2000 images. According to the Table 10, our Objects365

pretraining model has large advantages over other pretrain-

ing models, i.e., 1.7 points (42.9 vs 41.2) over the ImageNet

pretraining model and 1.4 points (42.9 vs 41.5) over the

COCO 540K iterations finetuned model.



Pretraining Dataset mIOU

None 58.3

ImageNet 74.5

ImageNet -> COCO 540K iters 74.9

OpenImages 74.1

Objects365 76.7
ImageNet -> Objects365 76.6

Table 9. Generalization ability of semantic segmentation results on

the PASCAL VOC dataset. The results are implemented based on

PSPNet with Resnet50 backbone.

Pretraining Dataset mIOU

None 30.2

ImageNet 41.2

ImageNet -> COCO 540K iters 41.5

OpenImages 40.7

Objects365 42.9

ImageNet -> Objects365 43.3
Table 10. Generalization ability of semantic segmentation results

on the ADE dataset. The results are implemented based on PSPNet

with Resnet50 backbone.

4.3.3 Speed Up Finetuning

According to our experiments on COCO, we find that Ob-

jects365 dataset could help researchers to accelerate their

finetuning processes. As shown in Table 11, the algorithm

trained only 12K iterations based on the Objects365 pre-

trained model can have the comparable performance against

the model trained with 540K iterations based on the Ima-

geNet pre-trained model. Therefore, by utilizing the Ob-

jects365 pretraining, we can obtain more than 10-20 times

faster training time without compromising the performance

on the COCO benchmark. This significantly reduces the

training cost and speed-up the innovation cycle.

4.3.4 Upper-bound

As studied in [15], given sufficient training time, training

from scratch can obtain comparable performance as the

training from ImageNet pretraining. The model pre-trained

with our Objects365 dataset can significantly outperform

the model with sufficient long training time, 42.0 vs 39.3

as shown in Table 11. It validates that the Objects365 pre-

trained model can further push the upper-bound results for

the existing algorithms. There are two potential reasons for

the large improvement. First, the feature learned on larger

scale dataset is better. Second, the pretraining of both back-

bone and head provides meaningful gains compared with

pretraining the backbone only.

Train Dataset Iterations mmAP

ImageNet-> COCO 90K 36.4

ImageNet-> COCO 180K 38.3

ImageNet-> COCO 420K 39.3

ImageNet-> COCO 540K 39.3

Objects365-> COCO 12K 39.0

Objects365-> COCO 18K 40.0

Objects365-> COCO 36K 41.1

Objects365-> COCO 90K 42.0
Table 11. Comparison of the training time for the COCO general

detection task. The algorithm is implemented based on the FPN

with the Resnet50 backbone. Iterations denotes the number of it-

erations for the COCO training.

Method Pretrain Part Iters mmAP

ImageNet Backbone 90K 36.4

ImageNet Backbone 180K 38.3

ImageNet Backbone 540K 39.3

Objects365 Backbone 90K 37.8

Objects365 Backbone 180K 39.4

Objects365 Backbone 540K 40.3

Objects365 Backbone & Head 90K 42.0
Table 12. Comparison of the pretraining backbone only against

pretraining both the backbone and head on the COCO benchmark.

The results are implemented based on FPN with Resnet50 back-

bone. “Iters” denotes the number of iterations for the COCO train-

ing.

4.3.5 Pretrain Backbone vs Pretrain Backbone+Head

One of the main advantages of pretraining with our Ob-

jects365 benchmark is due to the pretraining weights of both

the backbone and head parts, instead of ImageNet pretrain-

ing which only provides the weights for the backbone part.

In Table 12, we show an experiment in which by dropping

the pretraining weights (randomly initializing the weights)

of the head part from a pre-trained Objects365 model, the

performance of the finetuned detector drops around 2.6

points (42.0 vs 39.4) on the COCO benchmark. This val-

idates that pretraining head is also important.

5. Conclusion
In this paper, we present a large-scale, high-quality

object detection dataset, Objects365, which establishes a

new challenge and benefits the many existing localization-

sensitive vision tasks. In the future, we plan to investigate

bigger models than ResNet-50.
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